{"title":"A label-free electrochemical immunosensor for bladder tumor marker NMP22 using AuNPs@OMC and Thi@Gr-COOH nanocomposites.","authors":"Nuttakorn Junlapak, Suntisak Khumngern, Natha Nontipichet, Tawatchai Kangkamano, Panote Thavarungkul, Atchara Lomae, Tanan Bejrananda, Apon Numnuam","doi":"10.1016/j.bioelechem.2025.109074","DOIUrl":null,"url":null,"abstract":"<p><p>A highly sensitive and selective label-free electrochemical immunosensor was developed to detect nuclear matrix protein 22 (NMP22), a bladder cancer marker, in urine. A screen-printed carbon electrode (SPCE) was modified with carboxylate graphene-supported thionine (Thi@Gr-COOH) as a redox probe, and a unique structure of ordered mesoporous carbon decorated with gold nanoparticles (AuNPs@OMC). The large active site and uniform porosity of OMC facilitated the deposition of AuNPs, significantly increasing the antibody coverage. NMP22 concentration was determined based on changes in the peak current of Thi reduction measured by differential pulse voltammetry before and after the formation of the immunocomplex. In the optimal condition, the proposed immunosensor demonstrated linearity of 1.0 × 10<sup>-7</sup> to 1.0 × 10<sup>-1</sup> ng mL<sup>-1</sup> with detection limit of 2.96 × 10<sup>-8</sup> ng mL<sup>-1</sup>. Furthermore, the proposed sensor demonstrated good reproducibility, stability for over 20 days, reusability up to 5 cycles of binding and regeneration, and good selectivity. The developed electrochemical immunosensor effectively detected NMP22 in human urine samples, achieving good recoveries and results that matched the NMP22™ Bladderchek™ TEST, proving it can be used effectively.</p>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"167 ","pages":"109074"},"PeriodicalIF":4.5000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioelechem.2025.109074","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A highly sensitive and selective label-free electrochemical immunosensor was developed to detect nuclear matrix protein 22 (NMP22), a bladder cancer marker, in urine. A screen-printed carbon electrode (SPCE) was modified with carboxylate graphene-supported thionine (Thi@Gr-COOH) as a redox probe, and a unique structure of ordered mesoporous carbon decorated with gold nanoparticles (AuNPs@OMC). The large active site and uniform porosity of OMC facilitated the deposition of AuNPs, significantly increasing the antibody coverage. NMP22 concentration was determined based on changes in the peak current of Thi reduction measured by differential pulse voltammetry before and after the formation of the immunocomplex. In the optimal condition, the proposed immunosensor demonstrated linearity of 1.0 × 10-7 to 1.0 × 10-1 ng mL-1 with detection limit of 2.96 × 10-8 ng mL-1. Furthermore, the proposed sensor demonstrated good reproducibility, stability for over 20 days, reusability up to 5 cycles of binding and regeneration, and good selectivity. The developed electrochemical immunosensor effectively detected NMP22 in human urine samples, achieving good recoveries and results that matched the NMP22™ Bladderchek™ TEST, proving it can be used effectively.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.