Modeling Oxygen Loss and Phase Transformation in Ni-Rich Cathode Materials: Impact of Electrode Microstructure

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Svenja Both, Dr. Simon Hein, Dr. Timo Danner, Prof. Dr. Arnulf Latz
{"title":"Modeling Oxygen Loss and Phase Transformation in Ni-Rich Cathode Materials: Impact of Electrode Microstructure","authors":"Svenja Both,&nbsp;Dr. Simon Hein,&nbsp;Dr. Timo Danner,&nbsp;Prof. Dr. Arnulf Latz","doi":"10.1002/batt.202400802","DOIUrl":null,"url":null,"abstract":"<p>Nickel-Manganese-Cobalt (NMC) oxides are widely used as cathode materials in lithium-ion batteries. While increasing the nickel content increases the available capacity in a given voltage window, it also reduces the structural stability of the material when cycled to high cutoff voltages. Oxygen release from the crystal structure as well as a layered-to-rocksalt phase transformation of the layered oxide material cause capacity loss and impedance rise. In this work, we propose a continuum approach to model oxygen release and the associated phase transformation using a 1+1D model informed by atomistic simulations to predict the thickness of reconstructed active material over time. An efficient interface model allows us to combine this approach with 3D microstructure-resolved simulations in order to study the effect of a resistive layer on a real cathode microstructure. This novel workflow enables us to investigate the effect of individual electrode properties on the phase transformation and guide future electrode design.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 8","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400802","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400802","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-Manganese-Cobalt (NMC) oxides are widely used as cathode materials in lithium-ion batteries. While increasing the nickel content increases the available capacity in a given voltage window, it also reduces the structural stability of the material when cycled to high cutoff voltages. Oxygen release from the crystal structure as well as a layered-to-rocksalt phase transformation of the layered oxide material cause capacity loss and impedance rise. In this work, we propose a continuum approach to model oxygen release and the associated phase transformation using a 1+1D model informed by atomistic simulations to predict the thickness of reconstructed active material over time. An efficient interface model allows us to combine this approach with 3D microstructure-resolved simulations in order to study the effect of a resistive layer on a real cathode microstructure. This novel workflow enables us to investigate the effect of individual electrode properties on the phase transformation and guide future electrode design.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

模拟富镍阴极材料中的氧损失和相变:电极微观结构的影响
镍锰钴氧化物是锂离子电池中广泛使用的正极材料。虽然增加镍含量增加了给定电压窗口内的可用容量,但当循环到高截止电压时,它也降低了材料的结构稳定性。从晶体结构中释放氧气以及层状氧化物材料从层状到岩盐的相变导致容量损失和阻抗升高。在这项工作中,我们提出了一种连续体方法来模拟氧气释放和相关的相变,使用由原子模拟提供的1+1D模型来预测重建活性材料随时间的厚度。有效的界面模型使我们能够将这种方法与三维微观结构分辨模拟相结合,以研究电阻层对真实阴极微观结构的影响。这种新颖的工作流程使我们能够研究单个电极特性对相变的影响,并指导未来的电极设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信