The genus 1 bridge number of satellite knots

IF 1.2 2区 数学 Q1 MATHEMATICS
Scott A. Taylor, Maggy Tomova
{"title":"The genus 1 bridge number of satellite knots","authors":"Scott A. Taylor,&nbsp;Maggy Tomova","doi":"10.1112/jlms.70260","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> be a satellite knot, link, or spatial graph in a 3-manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> that is either <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>3</mn>\n </msup>\n <annotation>$S^3$</annotation>\n </semantics></math> or a lens space. Let <span></span><math>\n <semantics>\n <msub>\n <mi>b</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathfrak {b}_0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>b</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\mathfrak {b}_1$</annotation>\n </semantics></math> denote genus 0 and genus 1 bridge number, respectively. Suppose that <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> has a companion knot <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> (necessarily not the unknot) and wrapping number <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. When <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is not a torus knot, we show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>b</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mi>ω</mi>\n <msub>\n <mi>b</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathfrak {b}_1(T)\\geqslant \\omega \\mathfrak {b}_1(K)$</annotation>\n </semantics></math>. There are previously known counterexamples if <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is a torus knot. Along the way, we generalize and give a new proof of Schubert's result that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>b</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mi>ω</mi>\n <msub>\n <mi>b</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathfrak {b}_0(T) \\geqslant \\omega \\mathfrak {b}_0(K)$</annotation>\n </semantics></math>. We also prove versions of the theorem applicable to when <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is a “lensed satellite” and when there is a torus separating components of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70260","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let T $T$ be a satellite knot, link, or spatial graph in a 3-manifold M $M$ that is either S 3 $S^3$ or a lens space. Let b 0 $\mathfrak {b}_0$ and b 1 $\mathfrak {b}_1$ denote genus 0 and genus 1 bridge number, respectively. Suppose that T $T$ has a companion knot K $K$ (necessarily not the unknot) and wrapping number ω $\omega$ with respect to K $K$ . When K $K$ is not a torus knot, we show that b 1 ( T ) ω b 1 ( K ) $\mathfrak {b}_1(T)\geqslant \omega \mathfrak {b}_1(K)$ . There are previously known counterexamples if K $K$ is a torus knot. Along the way, we generalize and give a new proof of Schubert's result that b 0 ( T ) ω b 0 ( K ) $\mathfrak {b}_0(T) \geqslant \omega \mathfrak {b}_0(K)$ . We also prove versions of the theorem applicable to when T $T$ is a “lensed satellite” and when there is a torus separating components of T $T$ .

Abstract Image

Abstract Image

属1桥数卫星节
设T $T$为3流形M $M$中的卫星结、链路或空间图,该3流形M 是s3 $S^3$或透镜空间。设b0 $\mathfrak {b}_0$和b1 $\mathfrak {b}_1$分别表示0和1属桥号。假设T $T$有一个伴结K $K$(不一定是解结)和相对于K $K$的包裹数ω $\omega$。当K $K$不是环面结时,我们显示b1 (T)小于ω b1 (K) $\mathfrak {b}_1(T)\geqslant \omega \mathfrak {b}_1(K)$。如果K $K$是环面结,有一些已知的反例。一路走来,我们推广并给出舒伯特结果的新证明b 0 (T)小于ω b 0 (K)$\mathfrak {b}_0(T) \geqslant \omega \mathfrak {b}_0(K)$。我们还证明了当T $T$是一个“透镜卫星”以及当有一个环面分离T $T$的组件时适用的定理版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信