A Nordhaus–Gaddum Problem for the Spectral Gap of a Graph

IF 1 3区 数学 Q2 MATHEMATICS
Sooyeong Kim, Neal Madras
{"title":"A Nordhaus–Gaddum Problem for the Spectral Gap of a Graph","authors":"Sooyeong Kim,&nbsp;Neal Madras","doi":"10.1002/jgt.23253","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, with complement <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n </semantics></math>. The spectral gap of the transition probability matrix of a random walk on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is used to estimate how fast the random walk becomes stationary. We prove that the larger spectral gap of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, if all degrees are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then the larger spectral gap of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. We also show that if the maximum degree is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> or if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a join of two graphs, then the spectral gap of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>/</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Finally, we provide a family of connected graphs with connected complements such that the larger spectral gap of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>/</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mn>3</mn>\n \n <mo>∕</mo>\n \n <mn>4</mn>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"132-144"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23253","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph on n vertices, with complement G ¯ . The spectral gap of the transition probability matrix of a random walk on G is used to estimate how fast the random walk becomes stationary. We prove that the larger spectral gap of G and G ¯ is Ω ( 1 n ) . Moreover, if all degrees are Ω ( n ) and n Ω ( n ) , then the larger spectral gap of G and G ¯ is Θ ( 1 ) . We also show that if the maximum degree is n O ( 1 ) or if G is a join of two graphs, then the spectral gap of G is Ω ( 1 / n ) . Finally, we provide a family of connected graphs with connected complements such that the larger spectral gap of G and G ¯ is O ( 1 / n 3 4 ) .

Abstract Image

图的谱隙的Nordhaus-Gaddum问题
我们还证明了如果最大度是n−O (1)或者如果G是两个图的连接,则G的谱隙为Ω (1)/ n)。最后,我们提供了一组具有连通补的连通图,使得G和G¯的谱隙更大O (1 / n3∕4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信