Advanced Nanoscale Functionalities for Water and Energy Technologies

IF 2.8
Zhi Xu, Nan Wu, Soufiane Abdelghani-Idrissi, Corentin Trégouët, Javier Perez-Carvajal, Annie Colin, Ming Ma, Antoine Niguès, Alessandro Siria
{"title":"Advanced Nanoscale Functionalities for Water and Energy Technologies","authors":"Zhi Xu,&nbsp;Nan Wu,&nbsp;Soufiane Abdelghani-Idrissi,&nbsp;Corentin Trégouët,&nbsp;Javier Perez-Carvajal,&nbsp;Annie Colin,&nbsp;Ming Ma,&nbsp;Antoine Niguès,&nbsp;Alessandro Siria","doi":"10.1002/apxr.202400195","DOIUrl":null,"url":null,"abstract":"<p>Nanofluidics, the study of fluid behaviors under nanoscale confinement, is driving transformative innovations in water and energy technologies. This rapidly evolving field leverages unique physical and chemical phenomena such as enhanced ion transport and tunable fluid interactions, enabling breakthrough advancements in critical applications. This review provides a comprehensive overview of theoretical frameworks and technological innovations facilitated by nanofluidics, highlighting its implications across diverse domains. Key applications include water treatment and desalination, where advanced nanostructured materials enable superior selectivity and efficiency in molecular and ionic separations. The principles of nanofluidics also offer new pathways for renewable energy generation, including harvesting osmotic energy and optimizing energy storage systems. Additionally, the integration of nanofluidics into carbon dioxide capture and utilization processes has opened new horizons for addressing climate change by enhancing reaction efficiencies and facilitating sustainable resource cycles. By bridging fundamental nanoscale science with innovative applications, nanofluidics presents a transformative approach for addressing global challenges in water security, sustainable energy, and environmental management. The review concludes by discussing scaling challenges, interdisciplinary opportunities, and the promising future directions of nanofluidic technologies for sustainable development.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202400195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluidics, the study of fluid behaviors under nanoscale confinement, is driving transformative innovations in water and energy technologies. This rapidly evolving field leverages unique physical and chemical phenomena such as enhanced ion transport and tunable fluid interactions, enabling breakthrough advancements in critical applications. This review provides a comprehensive overview of theoretical frameworks and technological innovations facilitated by nanofluidics, highlighting its implications across diverse domains. Key applications include water treatment and desalination, where advanced nanostructured materials enable superior selectivity and efficiency in molecular and ionic separations. The principles of nanofluidics also offer new pathways for renewable energy generation, including harvesting osmotic energy and optimizing energy storage systems. Additionally, the integration of nanofluidics into carbon dioxide capture and utilization processes has opened new horizons for addressing climate change by enhancing reaction efficiencies and facilitating sustainable resource cycles. By bridging fundamental nanoscale science with innovative applications, nanofluidics presents a transformative approach for addressing global challenges in water security, sustainable energy, and environmental management. The review concludes by discussing scaling challenges, interdisciplinary opportunities, and the promising future directions of nanofluidic technologies for sustainable development.

Abstract Image

Abstract Image

Abstract Image

水和能源技术的先进纳米功能
纳米流体学,研究纳米尺度约束下的流体行为,正在推动水和能源技术的变革性创新。这一快速发展的领域利用了独特的物理和化学现象,如增强的离子传输和可调节的流体相互作用,从而在关键应用中取得突破性进展。这篇综述提供了纳米流体的理论框架和技术创新的全面概述,突出了其在不同领域的影响。关键应用包括水处理和海水淡化,其中先进的纳米结构材料在分子和离子分离方面具有卓越的选择性和效率。纳米流体的原理也为可再生能源的产生提供了新的途径,包括收集渗透能和优化储能系统。此外,将纳米流体整合到二氧化碳捕获和利用过程中,通过提高反应效率和促进可持续资源循环,为应对气候变化开辟了新的视野。通过将基础纳米科学与创新应用相结合,纳米流体为解决水安全、可持续能源和环境管理方面的全球挑战提供了一种变革性的方法。综述最后讨论了纳米流体技术在可持续发展中的规模挑战、跨学科机遇和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信