Kristina G. Hopkins, Rebecca L. Hale, Krista A. Capps, John S. Kominoski, Jennifer L. Morse, Allison H. Roy, Andrew Blinn, Shuo Chen, Liz Ortiz Muñoz, Annika Quick, Jacob Rudolph
{"title":"Overcoming Challenges in Mapping Hydrography and Heterogeneity in Urban Landscapes","authors":"Kristina G. Hopkins, Rebecca L. Hale, Krista A. Capps, John S. Kominoski, Jennifer L. Morse, Allison H. Roy, Andrew Blinn, Shuo Chen, Liz Ortiz Muñoz, Annika Quick, Jacob Rudolph","doi":"10.1002/hyp.70221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Understanding how water moves through a watershed is one of the most fundamental yet often complicated aspects of hydrology, especially in urban areas. Urban infrastructure and water management alter natural hydrological pathways in developed watersheds, which can violate assumptions of a watershed approach to ecosystem science. We focus on two aspects of urban landscapes that often create challenges to model watershed processes within and among urban areas: (1) accurate delineation of urban flow paths and (2) consistent characterisation of the urban landscape within and among cities. Here, we describe these challenges and identify how certain components of these challenges can be addressed, highlighting examples and lessons learned in a project that is assessing scales and drivers of variability in dissolved organic carbon across five urban centres in the United States. Our goal is to facilitate a dialogue that will advance the applications of watershed approaches in urban ecosystem science by recognising and addressing these challenges. Our examples focus on the United States but could be applicable to similar urban challenges in other locations globally.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70221","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how water moves through a watershed is one of the most fundamental yet often complicated aspects of hydrology, especially in urban areas. Urban infrastructure and water management alter natural hydrological pathways in developed watersheds, which can violate assumptions of a watershed approach to ecosystem science. We focus on two aspects of urban landscapes that often create challenges to model watershed processes within and among urban areas: (1) accurate delineation of urban flow paths and (2) consistent characterisation of the urban landscape within and among cities. Here, we describe these challenges and identify how certain components of these challenges can be addressed, highlighting examples and lessons learned in a project that is assessing scales and drivers of variability in dissolved organic carbon across five urban centres in the United States. Our goal is to facilitate a dialogue that will advance the applications of watershed approaches in urban ecosystem science by recognising and addressing these challenges. Our examples focus on the United States but could be applicable to similar urban challenges in other locations globally.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.