Engineering Current Collector with 2D TiO2 Nanosheets for Stable Lithium Metal Batteries

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Jun Seo Park, Mohammad Nasir, Donghyoung Kim, Hyung Mo Jeong, Hee Jung Park
{"title":"Engineering Current Collector with 2D TiO2 Nanosheets for Stable Lithium Metal Batteries","authors":"Jun Seo Park,&nbsp;Mohammad Nasir,&nbsp;Donghyoung Kim,&nbsp;Hyung Mo Jeong,&nbsp;Hee Jung Park","doi":"10.1002/batt.202400741","DOIUrl":null,"url":null,"abstract":"<p>The formation of lithium dendrites, driven by the non-uniform deposition of lithium, remains a critical challenge for the performance and safety of lithium metal batteries. To address this issue, we engineer the surface of copper current collectors by depositing ultra-thin 2D TiO2 nanosheets with varying thicknesses (0–1200 nm) as a protective layer. Half-cells without the 2D TiO2 coating exhibit a significant decline in Coulombic efficiency after only 65 charge-discharge cycles. In contrast, the modified current collector with the smoothest surface achieves remarkable cycling stability, maintaining ~97.6 % Coulombic efficiency after 200 cycles. Full cells incorporating these nanosheets demonstrate a good discharge capacity of ~134 mAh/g after 150 cycles at a 1 C rate. The improved electrochemical performance is attributed to the high lithium affinity and reduced surface roughness of the current collector facilitated by the 2D TiO<sub>2</sub> buffer layer. These findings emphasize the crucial role of 2D TiO<sub>2</sub> nanosheets in regulating Li-ion deposition, thereby significantly improving the cycling stability and performance of lithium metal batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 8","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400741","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of lithium dendrites, driven by the non-uniform deposition of lithium, remains a critical challenge for the performance and safety of lithium metal batteries. To address this issue, we engineer the surface of copper current collectors by depositing ultra-thin 2D TiO2 nanosheets with varying thicknesses (0–1200 nm) as a protective layer. Half-cells without the 2D TiO2 coating exhibit a significant decline in Coulombic efficiency after only 65 charge-discharge cycles. In contrast, the modified current collector with the smoothest surface achieves remarkable cycling stability, maintaining ~97.6 % Coulombic efficiency after 200 cycles. Full cells incorporating these nanosheets demonstrate a good discharge capacity of ~134 mAh/g after 150 cycles at a 1 C rate. The improved electrochemical performance is attributed to the high lithium affinity and reduced surface roughness of the current collector facilitated by the 2D TiO2 buffer layer. These findings emphasize the crucial role of 2D TiO2 nanosheets in regulating Li-ion deposition, thereby significantly improving the cycling stability and performance of lithium metal batteries.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

用于稳定锂金属电池的2D TiO2纳米片工程集流器
由于锂的沉积不均匀,导致锂枝晶的形成,这对锂金属电池的性能和安全性来说仍然是一个关键的挑战。为了解决这个问题,我们通过沉积不同厚度(0 - 1200nm)的超薄2D TiO2纳米片作为保护层来设计铜集流器的表面。未涂覆2D TiO2的半电池在65次充放电循环后库仑效率显著下降。相比之下,表面光滑的改性集流器具有显著的循环稳定性,在200次循环后仍保持97.6%的库仑效率。含有这些纳米片的完整电池在1c倍率下循环150次后具有~134 mAh/g的良好放电容量。电化学性能的提高是由于2D TiO2缓冲层促进了集电极的高锂亲和力和降低了表面粗糙度。这些发现强调了2D TiO2纳米片在调节锂离子沉积中的关键作用,从而显著提高锂金属电池的循环稳定性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信