Jun Seo Park, Mohammad Nasir, Donghyoung Kim, Hyung Mo Jeong, Hee Jung Park
{"title":"Engineering Current Collector with 2D TiO2 Nanosheets for Stable Lithium Metal Batteries","authors":"Jun Seo Park, Mohammad Nasir, Donghyoung Kim, Hyung Mo Jeong, Hee Jung Park","doi":"10.1002/batt.202400741","DOIUrl":null,"url":null,"abstract":"<p>The formation of lithium dendrites, driven by the non-uniform deposition of lithium, remains a critical challenge for the performance and safety of lithium metal batteries. To address this issue, we engineer the surface of copper current collectors by depositing ultra-thin 2D TiO2 nanosheets with varying thicknesses (0–1200 nm) as a protective layer. Half-cells without the 2D TiO2 coating exhibit a significant decline in Coulombic efficiency after only 65 charge-discharge cycles. In contrast, the modified current collector with the smoothest surface achieves remarkable cycling stability, maintaining ~97.6 % Coulombic efficiency after 200 cycles. Full cells incorporating these nanosheets demonstrate a good discharge capacity of ~134 mAh/g after 150 cycles at a 1 C rate. The improved electrochemical performance is attributed to the high lithium affinity and reduced surface roughness of the current collector facilitated by the 2D TiO<sub>2</sub> buffer layer. These findings emphasize the crucial role of 2D TiO<sub>2</sub> nanosheets in regulating Li-ion deposition, thereby significantly improving the cycling stability and performance of lithium metal batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 8","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400741","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of lithium dendrites, driven by the non-uniform deposition of lithium, remains a critical challenge for the performance and safety of lithium metal batteries. To address this issue, we engineer the surface of copper current collectors by depositing ultra-thin 2D TiO2 nanosheets with varying thicknesses (0–1200 nm) as a protective layer. Half-cells without the 2D TiO2 coating exhibit a significant decline in Coulombic efficiency after only 65 charge-discharge cycles. In contrast, the modified current collector with the smoothest surface achieves remarkable cycling stability, maintaining ~97.6 % Coulombic efficiency after 200 cycles. Full cells incorporating these nanosheets demonstrate a good discharge capacity of ~134 mAh/g after 150 cycles at a 1 C rate. The improved electrochemical performance is attributed to the high lithium affinity and reduced surface roughness of the current collector facilitated by the 2D TiO2 buffer layer. These findings emphasize the crucial role of 2D TiO2 nanosheets in regulating Li-ion deposition, thereby significantly improving the cycling stability and performance of lithium metal batteries.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.