Number of Subgraphs and Their Converses in Tournaments and New Digraph Polynomials

IF 1 3区 数学 Q2 MATHEMATICS
Jiangdong Ai, Gregory Gutin, Hui Lei, Anders Yeo, Yacong Zhou
{"title":"Number of Subgraphs and Their Converses in Tournaments and New Digraph Polynomials","authors":"Jiangdong Ai,&nbsp;Gregory Gutin,&nbsp;Hui Lei,&nbsp;Anders Yeo,&nbsp;Yacong Zhou","doi":"10.1002/jgt.23257","DOIUrl":null,"url":null,"abstract":"<p>An oriented graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> is <i>converse invariant</i> if, for any tournament <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math>, the number of copies of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> is equal to that of its converse <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>−</mo>\n \n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math>. El Sahili and Ghazo Hanna [J. Graph Theory 102 (2023), 684-701] showed that any oriented graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> with maximum degree at most 2 is converse invariant. They proposed a question: Can we characterize all converse invariant oriented graphs? In this paper, we introduce a digraph polynomial and employ it to give a necessary condition for an oriented graph to be converse invariant. This polynomial serves as a cornerstone in proving all the results presented in this paper. In particular, we characterize all orientations of trees with diameter at most 3 that are converse invariant. We also show that all orientations of regular graphs are not converse invariant if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>−</mo>\n \n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> have different degree sequences. In addition, in contrast to the findings of El Sahili and Ghazo Hanna, we prove that every connected graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with maximum degree at least 3, admits an orientation <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> is not converse invariant. We pose a new conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 2","pages":"127-131"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23257","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23257","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An oriented graph D is converse invariant if, for any tournament T , the number of copies of D in T is equal to that of its converse D . El Sahili and Ghazo Hanna [J. Graph Theory 102 (2023), 684-701] showed that any oriented graph D with maximum degree at most 2 is converse invariant. They proposed a question: Can we characterize all converse invariant oriented graphs? In this paper, we introduce a digraph polynomial and employ it to give a necessary condition for an oriented graph to be converse invariant. This polynomial serves as a cornerstone in proving all the results presented in this paper. In particular, we characterize all orientations of trees with diameter at most 3 that are converse invariant. We also show that all orientations of regular graphs are not converse invariant if D and D have different degree sequences. In addition, in contrast to the findings of El Sahili and Ghazo Hanna, we prove that every connected graph G with maximum degree at least 3, admits an orientation D of G such that D is not converse invariant. We pose a new conjecture.

竞赛和新有向图多项式中的子图及其逆数
有向图D是逆不变的,如果,对于任意比武T,D在T中的拷贝数等于它的逆的拷贝数D .[J]。图论102(2023),684-701]证明了任何最大度不超过2的有向图D是逆不变的。他们提出了一个问题:我们能否描述所有逆不变面向图?本文引入了一个有向图多项式,并利用它给出了有向图逆不变的一个必要条件。这个多项式是证明本文所有结果的基础。特别地,我们描述了直径不超过3的树的所有方向是逆不变的。我们还证明了如果D和- D具有不同的次序列,正则图的所有方向都不是逆不变的。此外,对比El Sahili和Ghazo Hanna的发现,我们证明了每一个最大度至少为3的连通图G,承认G的取向D,使得D不是逆不变的。我们提出一个新的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信