{"title":"Environmental and Emission Analysis of Biodiesel/Bioethanol/Nanoparticles Blends With Hydrogen Addition in Diesel Engine","authors":"Ravikumar Jayabal, Rajkumar Sivanraju","doi":"10.1002/ese3.70151","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the emission characteristics of a diesel engine fueled by a combination of algae biodiesel (AB), bioethanol (BE), graphene oxide (GO) nanoparticles, and hydrogen (H<sub>2</sub>) fumigation, assessing their potential as sustainable fuel alternatives. A single-cylinder diesel engine was tested under different load conditions using a biodiesel blend (AB + GO 50 ppm + BE 10%) as the primary fuel. At the same time, H<sub>2</sub> was introduced into the intake manifold via a port fuel injector at flow rates of 3 and 6 L/min (LPM). Emissions, including hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO<sub><i>x</i></sub>), and smoke opacity, were analyzed. Emission data from three independent runs at each load were analyzed with one-way ANOVA followed by Tukey's HSD test (<i>p</i> < 0.05) to verify statistical significance. The findings showed that H<sub>2</sub> fumigation at 3 and 6 LPM reduced HC emissions by 33.33% and 46.66%, CO by 57.75% and 77.58%, and smoke opacity by 15.04% and 31%, respectively, when compared with conventional diesel. While NO<i><sub>x</sub></i> emissions for the biodiesel blend without H<sub>2</sub> were 11.69% lower than diesel, H<sub>2</sub> fumigation increased NO<sub><i>x</i></sub> by 20.71% and 39% at 3 and 6 LPM, respectively. Combining AB, BE, GO, and H<sub>2</sub> effectively reduces HC, CO, and smoke emissions while improving combustion efficiency. However, higher NO<i><sub>x</sub></i> emissions with H<sub>2</sub> fumigation highlight the need for further optimization.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 8","pages":"4024-4031"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ese3.70151","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the emission characteristics of a diesel engine fueled by a combination of algae biodiesel (AB), bioethanol (BE), graphene oxide (GO) nanoparticles, and hydrogen (H2) fumigation, assessing their potential as sustainable fuel alternatives. A single-cylinder diesel engine was tested under different load conditions using a biodiesel blend (AB + GO 50 ppm + BE 10%) as the primary fuel. At the same time, H2 was introduced into the intake manifold via a port fuel injector at flow rates of 3 and 6 L/min (LPM). Emissions, including hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and smoke opacity, were analyzed. Emission data from three independent runs at each load were analyzed with one-way ANOVA followed by Tukey's HSD test (p < 0.05) to verify statistical significance. The findings showed that H2 fumigation at 3 and 6 LPM reduced HC emissions by 33.33% and 46.66%, CO by 57.75% and 77.58%, and smoke opacity by 15.04% and 31%, respectively, when compared with conventional diesel. While NOx emissions for the biodiesel blend without H2 were 11.69% lower than diesel, H2 fumigation increased NOx by 20.71% and 39% at 3 and 6 LPM, respectively. Combining AB, BE, GO, and H2 effectively reduces HC, CO, and smoke emissions while improving combustion efficiency. However, higher NOx emissions with H2 fumigation highlight the need for further optimization.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.