Quasi-Geodesics in Integrable and Non-Integrable Exclusion Processes

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Patrik L. Ferrari, Min Liu
{"title":"Quasi-Geodesics in Integrable and Non-Integrable Exclusion Processes","authors":"Patrik L. Ferrari,&nbsp;Min Liu","doi":"10.1007/s10955-025-03488-9","DOIUrl":null,"url":null,"abstract":"<div><p>Backwards geodesics for TASEP were introduced in [30]. We consider flat initial conditions and show that under proper scaling the end-point of the geodesic converges to maximizer argument of the <span>\\(\\hbox {Airy}_2\\)</span> process minus a parabola. We generalize its definition to generic non-integrable models including ASEP and speed changed ASEP (call it quasi-geodesics). We numerically verify that its end-point is universal, where the scaling coefficients are analytically computed through the KPZ scaling theory.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03488-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03488-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Backwards geodesics for TASEP were introduced in [30]. We consider flat initial conditions and show that under proper scaling the end-point of the geodesic converges to maximizer argument of the \(\hbox {Airy}_2\) process minus a parabola. We generalize its definition to generic non-integrable models including ASEP and speed changed ASEP (call it quasi-geodesics). We numerically verify that its end-point is universal, where the scaling coefficients are analytically computed through the KPZ scaling theory.

可积和不可积不相容过程中的拟测地线
2010年引入了TASEP的反向测地线。我们考虑平坦初始条件,并证明在适当的缩放下测地线的端点收敛于\(\hbox {Airy}_2\)过程减去抛物线的最大化参数。我们将其定义推广到一般不可积模型,包括ASEP和变速ASEP(称为准测地线)。通过KPZ标度理论解析计算出标度系数,数值验证了其端点的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信