{"title":"Modification of the Structure and Properties of the Surface of Titanium VT1-0 after Electron Beam Processing","authors":"A. V. Ionina","doi":"10.1134/S1063783425600591","DOIUrl":null,"url":null,"abstract":"<p>In this work, the surface of commercially pure titanium grade VT1-0 was strengthened by electron beam treatment, which significantly increased the fatigue life of the material. The structural and phase states and defect substructure of titanium subjected to cyclic fatigue tests were studied using scanning and transmission electron diffraction microscopy. It was shown that the surface layer formed as a result of electron beam irradiation contains micropores oriented parallel to the sample surface. Irradiation of commercially pure titanium VT1-0 with a high-intensity pulsed electron beam under the conditions (16 keV, 25 J/cm<sup>2</sup>, 150 µs, 3 pulses, 0.3 s<sup>–1</sup>) leads to grain refinement and the formation of an intragranular substructure, i.e., to the development of additional structural levels in the submicron and nanometer range in the surface layer.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 8","pages":"737 - 744"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783425600591","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the surface of commercially pure titanium grade VT1-0 was strengthened by electron beam treatment, which significantly increased the fatigue life of the material. The structural and phase states and defect substructure of titanium subjected to cyclic fatigue tests were studied using scanning and transmission electron diffraction microscopy. It was shown that the surface layer formed as a result of electron beam irradiation contains micropores oriented parallel to the sample surface. Irradiation of commercially pure titanium VT1-0 with a high-intensity pulsed electron beam under the conditions (16 keV, 25 J/cm2, 150 µs, 3 pulses, 0.3 s–1) leads to grain refinement and the formation of an intragranular substructure, i.e., to the development of additional structural levels in the submicron and nanometer range in the surface layer.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.