Constructing urchin-like TiO2 integrated NiPt nanoparticles for boosting the decomposition of hydrazine hydrate

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shu-Yu Liu, Wen-Ting Ren, Lei-Yun Chen, Jing Xie, Chao Wan, Li-Xin Xu, Sheng-Lai Li, Jia-Pei Wang, Pavel S. Postnikov, Dang-Guo Cheng
{"title":"Constructing urchin-like TiO2 integrated NiPt nanoparticles for boosting the decomposition of hydrazine hydrate","authors":"Shu-Yu Liu,&nbsp;Wen-Ting Ren,&nbsp;Lei-Yun Chen,&nbsp;Jing Xie,&nbsp;Chao Wan,&nbsp;Li-Xin Xu,&nbsp;Sheng-Lai Li,&nbsp;Jia-Pei Wang,&nbsp;Pavel S. Postnikov,&nbsp;Dang-Guo Cheng","doi":"10.1007/s12598-025-03378-9","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical hydrogen storage technology is crucial for the widespread use of hydrogen, with significant research progress being made in hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O). However, the efficient decomposition of N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O remains a major challenge, hindered by dynamic constraints. To address this, we prepared NiPt nanoparticles deposited onto urchin-like TiO<sub>2</sub> (u-TiO<sub>2</sub>) using the impregnation-reduction method, resulting in the NiPt/u-TiO<sub>2</sub> catalyst. Remarkably, the Ni<sub>0.5</sub>Pt<sub>0.5</sub>/u-TiO<sub>2</sub> catalyst demonstrated 100% H<sub>2</sub> selectivity, ultrahigh catalytic activity and remarkable durability for N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O dehydrogenation, with a turnover frequency (TOF) of 115.8 min<sup>−1</sup>, surpassing that of the corresponding NiPt/commercial TiO<sub>2</sub> (c-TiO<sub>2</sub>). Characterization and experimental findings suggest that the remarkable activity may originate from the unique urchin-like structure of the catalyst, along with the synergistic interaction between NiPt metals and the support. This research opens new avenues for designing nanomaterials with morphology advantages for hydrogen evolution reaction.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 9","pages":"6331 - 6342"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03378-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical hydrogen storage technology is crucial for the widespread use of hydrogen, with significant research progress being made in hydrazine hydrate (N2H4·H2O). However, the efficient decomposition of N2H4·H2O remains a major challenge, hindered by dynamic constraints. To address this, we prepared NiPt nanoparticles deposited onto urchin-like TiO2 (u-TiO2) using the impregnation-reduction method, resulting in the NiPt/u-TiO2 catalyst. Remarkably, the Ni0.5Pt0.5/u-TiO2 catalyst demonstrated 100% H2 selectivity, ultrahigh catalytic activity and remarkable durability for N2H4·H2O dehydrogenation, with a turnover frequency (TOF) of 115.8 min−1, surpassing that of the corresponding NiPt/commercial TiO2 (c-TiO2). Characterization and experimental findings suggest that the remarkable activity may originate from the unique urchin-like structure of the catalyst, along with the synergistic interaction between NiPt metals and the support. This research opens new avenues for designing nanomaterials with morphology advantages for hydrogen evolution reaction.

Graphical abstract

构建海胆状TiO2集成NiPt纳米颗粒促进水合肼分解
化学储氢技术是氢的广泛应用的关键,在水合肼(N2H4·H2O)方面的研究取得了重大进展。然而,N2H4·H2O的高效分解仍然是一个主要的挑战,受到动态约束的阻碍。为了解决这一问题,我们采用浸渍还原法制备了NiPt纳米颗粒沉积在海胆状TiO2 (u-TiO2)上,从而得到NiPt/u-TiO2催化剂。值得注意的是,Ni0.5Pt0.5/u-TiO2催化剂表现出100%的H2选择性,超高的催化活性和显著的N2H4·H2O脱氢耐久性,周转频率(TOF)为115.8 min−1,超过了相应的NiPt/商用TiO2 (c-TiO2)。表征和实验结果表明,这种显著的活性可能源于催化剂独特的海胆状结构,以及NiPt金属与载体之间的协同作用。本研究为设计具有析氢反应形态优势的纳米材料开辟了新的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信