Wavelet Augmented Phase Coherence Features for EEG-Based Imagined Speech Classification

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anand Mohan;R. S Anand
{"title":"Wavelet Augmented Phase Coherence Features for EEG-Based Imagined Speech Classification","authors":"Anand Mohan;R. S Anand","doi":"10.1109/LSENS.2025.3591964","DOIUrl":null,"url":null,"abstract":"Brain–computer interfaces (BCIs) provide direct communication between the brain and external devices. Using electroencephalogram (EEG) sensors, BCIs are applied in assistive technologies and neuroprosthetics. Among various BCI paradigms, imagined speech-based BCI aims to decode internal speech representations from EEG signals, enabling silent communication. Decoding imagined speech is challenging due to the nonstationarity, intersubject variability of EEG signals and low signal-to-noise ratio. The proposed method uses a multilayer perceptron (MLP) integrated with a convolutional block attention module (CBAM) to enhance feature learning by refining spatial and channel-wise attention. To further improve performance, wavelet-based augmentation enhances data diversity. Phase and coherence-based functional connectivity features capture interchannel dependencies critical for imagined speech classification. The proposed wavelet-augmented phase coherence features with MLP-CBAM (WaveCoh-MLP-CBAM) framework is evaluated on an imagined speech dataset. The WaveCoh-MLP-CBAM shows superior classification accuracy, F1-score, and Cohen's kappa compared to conventional approaches. Results highlight the importance of augmentation, functional connectivity features, and attention in improving EEG-based imagined speech decoding.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 8","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11091402/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Brain–computer interfaces (BCIs) provide direct communication between the brain and external devices. Using electroencephalogram (EEG) sensors, BCIs are applied in assistive technologies and neuroprosthetics. Among various BCI paradigms, imagined speech-based BCI aims to decode internal speech representations from EEG signals, enabling silent communication. Decoding imagined speech is challenging due to the nonstationarity, intersubject variability of EEG signals and low signal-to-noise ratio. The proposed method uses a multilayer perceptron (MLP) integrated with a convolutional block attention module (CBAM) to enhance feature learning by refining spatial and channel-wise attention. To further improve performance, wavelet-based augmentation enhances data diversity. Phase and coherence-based functional connectivity features capture interchannel dependencies critical for imagined speech classification. The proposed wavelet-augmented phase coherence features with MLP-CBAM (WaveCoh-MLP-CBAM) framework is evaluated on an imagined speech dataset. The WaveCoh-MLP-CBAM shows superior classification accuracy, F1-score, and Cohen's kappa compared to conventional approaches. Results highlight the importance of augmentation, functional connectivity features, and attention in improving EEG-based imagined speech decoding.
基于小波增强相位相干特征的脑电想象语音分类
脑机接口(bci)提供大脑和外部设备之间的直接通信。利用脑电图传感器,脑机接口被应用于辅助技术和神经修复术。在各种脑机接口范式中,基于想象语音的脑机接口旨在从脑电信号中解码内部语音表征,实现无声通信。由于脑电信号的非平稳性、主体间变异性和低信噪比,语音解码具有一定的挑战性。该方法使用多层感知器(MLP)与卷积块注意模块(CBAM)相结合,通过细化空间和通道注意来增强特征学习。为了进一步提高性能,基于小波的增强增强了数据的多样性。基于相位和相干的功能连接特征捕获通道间依赖性,这对想象语音分类至关重要。在一个想象的语音数据集上评估了基于MLP-CBAM (WaveCoh-MLP-CBAM)框架的小波增强相位相干特征。与传统方法相比,WaveCoh-MLP-CBAM具有更高的分类精度、f1分数和科恩kappa。结果强调了增强、功能连接特征和注意力在改进基于脑电图的想象语音解码中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信