Anomaly Detection Using Data-Driven Sparse Sensors: Combination of Modal Representation and Sensor Optimization for Sensing of Targeted Variable

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuji Saito;Ryoma Inoba;Yasuo Sasaki;Takayuki Nagata;Keigo Yamada;Taku Nonomura
{"title":"Anomaly Detection Using Data-Driven Sparse Sensors: Combination of Modal Representation and Sensor Optimization for Sensing of Targeted Variable","authors":"Yuji Saito;Ryoma Inoba;Yasuo Sasaki;Takayuki Nagata;Keigo Yamada;Taku Nonomura","doi":"10.1109/LSENS.2025.3591066","DOIUrl":null,"url":null,"abstract":"We propose an anomaly detection method based on modal representation and a noise-robust sparse sensor position optimization method. We focus on the detection of anomalies in global sea surface temperature field observations indicative of El Niño and La Niña phenomena. For evaluation, we compared four methods, namely, the random linear least squares estimation method, the determinant-based greedy linear least squares method, the DG with noise covariance generalized linear least squares (DG/NC-GLS) estimation, and the Bayesian DG Bayesian estimation (BDG-BE) method of which the extension is proposed in this study. The results demonstrate that the DG/NC-GLS and BDG-BE methods outperform the other methods in anomaly detection. In fact, the DG/NC-GLS and BDG-BE methods achieve high accuracy and precision of over 81% with only 20 sensors (44 219 sensor candidates) for anomaly detection in global sea surface temperature field observations.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 8","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11086508/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an anomaly detection method based on modal representation and a noise-robust sparse sensor position optimization method. We focus on the detection of anomalies in global sea surface temperature field observations indicative of El Niño and La Niña phenomena. For evaluation, we compared four methods, namely, the random linear least squares estimation method, the determinant-based greedy linear least squares method, the DG with noise covariance generalized linear least squares (DG/NC-GLS) estimation, and the Bayesian DG Bayesian estimation (BDG-BE) method of which the extension is proposed in this study. The results demonstrate that the DG/NC-GLS and BDG-BE methods outperform the other methods in anomaly detection. In fact, the DG/NC-GLS and BDG-BE methods achieve high accuracy and precision of over 81% with only 20 sensors (44 219 sensor candidates) for anomaly detection in global sea surface temperature field observations.
基于数据驱动的稀疏传感器异常检测:模态表示与传感器优化相结合的目标变量感知
提出了一种基于模态表示的异常检测方法和一种抗噪声的稀疏传感器位置优化方法。我们的重点是探测全球海温场观测中指示El Niño和La Niña现象的异常。为了评价,我们比较了随机线性最小二乘估计方法、基于行列式的贪婪线性最小二乘方法、含噪声协方差的DG广义线性最小二乘估计(DG/NC-GLS)和本研究提出扩展的贝叶斯DG贝叶斯估计(BDG-BE)方法。结果表明,DG/NC-GLS和BDG-BE方法在异常检测方面优于其他方法。事实上,DG/NC-GLS和BDG-BE方法在全球海温场观测中,仅用20个传感器(候选传感器44 219个)就能实现81%以上的高精度和精密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信