Multiplicative character sums and Kloosterman sheaves

IF 0.8 2区 数学 Q2 MATHEMATICS
Nicholas M. Katz , Pham Huu Tiep
{"title":"Multiplicative character sums and Kloosterman sheaves","authors":"Nicholas M. Katz ,&nbsp;Pham Huu Tiep","doi":"10.1016/j.jalgebra.2025.07.019","DOIUrl":null,"url":null,"abstract":"<div><div>We are given a prime <em>p</em>, a power <em>q</em> of <em>p</em>, and a prime to <em>p</em> integer <em>a</em> with <span><math><mi>q</mi><mo>&gt;</mo><mi>a</mi><mo>≥</mo><mn>2</mn></math></span>. For a nontrivial multiplicative character <em>χ</em>, we consider the one parameter family of character sums<span><span><span><math><mi>t</mi><mo>↦</mo><mo>−</mo><munder><mo>∑</mo><mrow><mi>x</mi></mrow></munder><mi>χ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>−</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> which are the traces of a local system on the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>χ</mi><mo>)</mo></math></span> of nonzero <em>t</em>'s. We show that this local system is the pullback of a Kloosterman sheaf <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> (any <em>ρ</em> with <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>q</mi><mo>−</mo><mi>a</mi></mrow></msup><mo>=</mo><mi>χ</mi></math></span>), and determine the geometric monodromy group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>geom</mi></mrow></msub></math></span> of this <span><math><mi>K</mi></math></span>. We also determine <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>geom</mi></mrow></msub></math></span> for the universal family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>χ</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span> of sums <span><math><mo>−</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>χ</mi><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, as <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> runs over degree <em>e</em> polynomials with all distinct roots. These local systems <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>χ</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span> were the main focus of <span><span>[14, Chapter 4]</span></span>, and our new results for <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>χ</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span> are the complete determination of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>geom</mi></mrow></msub></math></span> in the cases where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>geom</mi></mrow></msub></math></span> is finite.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 738-772"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are given a prime p, a power q of p, and a prime to p integer a with q>a2. For a nontrivial multiplicative character χ, we consider the one parameter family of character sumstxχ(xq+xat), which are the traces of a local system on the Gm/Fp(χ) of nonzero t's. We show that this local system is the pullback of a Kloosterman sheaf Kq,a,ρ (any ρ with ρqa=χ), and determine the geometric monodromy group Ggeom of this K. We also determine Ggeom for the universal family Fχ,e of sums xχ(fe(x)), as fe runs over degree e polynomials with all distinct roots. These local systems Fχ,e were the main focus of [14, Chapter 4], and our new results for Fχ,e are the complete determination of Ggeom in the cases where Ggeom is finite.
乘法字符和和Kloosterman轴
我们已知一个素数p,一个p的幂q,一个素数到p的整数a,且q>;a≥2。对于一个非平凡的乘法字符χ,我们考虑了字符sumst∈−∑xχ(xq+xa−t)的单参数族,它们是一个局部系统在非零t的Gm/Fp(χ)上的迹。我们证明了这个局部系统是Kloosterman轴Kq,a,ρ(任意ρ与ρq−a=χ)的回拉,并确定了这个k的几何单群Ggeom。我们还确定了泛族Fχ,e的和-∑xχ(fe(x))的Ggeom,因为fe遍历具有所有不同根的e次多项式。这些局部系统Fχ,e是[14,第4章]的主要焦点,我们关于Fχ,e的新结果是在Ggeom有限的情况下Ggeom的完全确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信