Sourabh Balgi , Marc Braun , Jose M. Peña , Adel Daoud
{"title":"Sensitivity analysis to unobserved confounding with copula-based normalizing flows","authors":"Sourabh Balgi , Marc Braun , Jose M. Peña , Adel Daoud","doi":"10.1016/j.ijar.2025.109531","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel method for sensitivity analysis to unobserved confounding in causal inference. The method builds on a copula-based causal graphical normalizing flow that we term <em>ρ</em>-GNF, where <span><math><mi>ρ</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>]</mo></math></span> is the sensitivity parameter. The parameter represents the non-causal association between exposure and outcome due to unobserved confounding, which is modeled as a Gaussian copula. In other words, the <em>ρ</em>-GNF enables scholars to estimate the average causal effect (ACE) as a function of <em>ρ</em>, accounting for various confounding strengths. The output of the <em>ρ</em>-GNF is what we term the <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>u</mi><mi>r</mi><mi>v</mi><mi>e</mi></mrow></msub></math></span>, which provides the bounds for the ACE given an interval of assumed <em>ρ</em> values. The <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>u</mi><mi>r</mi><mi>v</mi><mi>e</mi></mrow></msub></math></span> also enables scholars to identify the confounding strength required to nullify the ACE. We also propose a Bayesian version of our sensitivity analysis method. Assuming a prior over the sensitivity parameter <em>ρ</em> enables us to derive the posterior distribution over the ACE, which enables us to derive credible intervals. Finally, leveraging on experiments from simulated and real-world data, we show the benefits of our sensitivity analysis method.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109531"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001720","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel method for sensitivity analysis to unobserved confounding in causal inference. The method builds on a copula-based causal graphical normalizing flow that we term ρ-GNF, where is the sensitivity parameter. The parameter represents the non-causal association between exposure and outcome due to unobserved confounding, which is modeled as a Gaussian copula. In other words, the ρ-GNF enables scholars to estimate the average causal effect (ACE) as a function of ρ, accounting for various confounding strengths. The output of the ρ-GNF is what we term the , which provides the bounds for the ACE given an interval of assumed ρ values. The also enables scholars to identify the confounding strength required to nullify the ACE. We also propose a Bayesian version of our sensitivity analysis method. Assuming a prior over the sensitivity parameter ρ enables us to derive the posterior distribution over the ACE, which enables us to derive credible intervals. Finally, leveraging on experiments from simulated and real-world data, we show the benefits of our sensitivity analysis method.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.