Philipp Basler , Lisa Biermann , Margarete Mühlleitner , Jonas Müller , Rui Santos , João Viana
{"title":"BSMPT v3 a tool for phase transitions and primordial gravitational waves in extended Higgs sectors","authors":"Philipp Basler , Lisa Biermann , Margarete Mühlleitner , Jonas Müller , Rui Santos , João Viana","doi":"10.1016/j.cpc.2025.109766","DOIUrl":null,"url":null,"abstract":"<div><div>Strong first-order phase transitions (SFOPT) during the evolution of the Higgs potential in the early universe not only allow for the dynamical generation of the observed matter-antimatter asymmetry, they can also source a stochastic gravitational wave (GW) background possibly detectable with future space-based gravitational waves interferometers. As SFOPTs are phenomenologically incompatible with the Standard Model (SM) Higgs sector, the observation of GWs from SFOPTs provides an exciting interplay between cosmology and particle physics in the search for new physics. With the <span>C++</span> code <span>BSMPTv3</span>, we present for the first time a tool that performs the whole chain from the particle physics model to the gravitational wave spectrum. Extending the previous versions <span>BSMPTv1</span> and <span>v2</span>, it traces the phases of beyond-SM (BSM) Higgs potentials and is capable of treating multiple vacuum directions and multi-step phase transitions. During the tracing, it checks for discrete symmetries, flat directions, and electroweak symmetry restoration, and finally reports the transition history. The transition probability from the false to the true vacuum is obtained from the solution of the bounce equation which allows for the calculation of the nucleation, percolation and completion temperatures. The amplitude and characteristic frequencies of the GWs originating from bubble collisions and highly relativistic fluid shells, sound waves and turbulence, are evaluated after the calculation of the thermal parameters at the transition temperature, and finally the signal-to-noise ratio at <span>LISA</span> is provided. The code <span>BSMPTv3</span> is a powerful self-contained tool that comes more than timely and will be of great benefit for investigations of the vacuum structure of the early universe of not only simple but also complicated Higgs potentials involving several vacuum directions, with exciting applications in the search for new physics.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"316 ","pages":"Article 109766"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002681","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Strong first-order phase transitions (SFOPT) during the evolution of the Higgs potential in the early universe not only allow for the dynamical generation of the observed matter-antimatter asymmetry, they can also source a stochastic gravitational wave (GW) background possibly detectable with future space-based gravitational waves interferometers. As SFOPTs are phenomenologically incompatible with the Standard Model (SM) Higgs sector, the observation of GWs from SFOPTs provides an exciting interplay between cosmology and particle physics in the search for new physics. With the C++ code BSMPTv3, we present for the first time a tool that performs the whole chain from the particle physics model to the gravitational wave spectrum. Extending the previous versions BSMPTv1 and v2, it traces the phases of beyond-SM (BSM) Higgs potentials and is capable of treating multiple vacuum directions and multi-step phase transitions. During the tracing, it checks for discrete symmetries, flat directions, and electroweak symmetry restoration, and finally reports the transition history. The transition probability from the false to the true vacuum is obtained from the solution of the bounce equation which allows for the calculation of the nucleation, percolation and completion temperatures. The amplitude and characteristic frequencies of the GWs originating from bubble collisions and highly relativistic fluid shells, sound waves and turbulence, are evaluated after the calculation of the thermal parameters at the transition temperature, and finally the signal-to-noise ratio at LISA is provided. The code BSMPTv3 is a powerful self-contained tool that comes more than timely and will be of great benefit for investigations of the vacuum structure of the early universe of not only simple but also complicated Higgs potentials involving several vacuum directions, with exciting applications in the search for new physics.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.