Long context window-based zero-shot legal interpretation of building codes and regulations

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Jaekun Lee , Ghang Lee
{"title":"Long context window-based zero-shot legal interpretation of building codes and regulations","authors":"Jaekun Lee ,&nbsp;Ghang Lee","doi":"10.1016/j.autcon.2025.106450","DOIUrl":null,"url":null,"abstract":"<div><div>South Korean authorities handle over 2000 inquiries daily about building code violations. Interpreting these complex, frequently updated codes is challenging, even for legal experts. Prior studies using large language models (LLMs) with retrieval-augmented generation (RAG) have struggled with context loss due to data segmentation. This paper proposes three automated building code interpreter (ABCI) models—Original, Inferred, and Filtered—that leverage long-context window (LCW) LLMs as the base model. On 171 challenging legal interpretative question-answering (LIQA) cases, ABCI-Filtered achieved 63.2 % accuracy, outperforming the RAG baseline approach (56.1 %), state-of-the-art LLMs like Claude 3.7 (60.2 %), as well as ABCI-Inferred (60.8 %) and ABCI-Original (56.7 %). Notably, unlike prior methods that require fine-tuning, ABCI-Filtered outperformed previous methods using only zero-shot reasoning. In an additional experiment using a relatively straightforward building code QA dataset, ABCI-Filtered and ABCI-Inferred outperformed the other methods (79.6 % and 80.0 %, respectively), confirming the difficulty of the initial task using the LIQA dataset.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"179 ","pages":"Article 106450"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052500490X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

South Korean authorities handle over 2000 inquiries daily about building code violations. Interpreting these complex, frequently updated codes is challenging, even for legal experts. Prior studies using large language models (LLMs) with retrieval-augmented generation (RAG) have struggled with context loss due to data segmentation. This paper proposes three automated building code interpreter (ABCI) models—Original, Inferred, and Filtered—that leverage long-context window (LCW) LLMs as the base model. On 171 challenging legal interpretative question-answering (LIQA) cases, ABCI-Filtered achieved 63.2 % accuracy, outperforming the RAG baseline approach (56.1 %), state-of-the-art LLMs like Claude 3.7 (60.2 %), as well as ABCI-Inferred (60.8 %) and ABCI-Original (56.7 %). Notably, unlike prior methods that require fine-tuning, ABCI-Filtered outperformed previous methods using only zero-shot reasoning. In an additional experiment using a relatively straightforward building code QA dataset, ABCI-Filtered and ABCI-Inferred outperformed the other methods (79.6 % and 80.0 %, respectively), confirming the difficulty of the initial task using the LIQA dataset.
基于长语境窗口的建筑法规零射击法律解释
韩国当局每天处理2000多个有关违反建筑规范的询问。即使对法律专家来说,解释这些复杂且经常更新的法规也是一项挑战。先前使用大型语言模型(llm)和检索增强生成(RAG)的研究一直在努力解决由于数据分割而导致的上下文丢失问题。本文提出了三种自动建筑代码解释器(ABCI)模型——原始模型、推断模型和过滤模型——它们利用长上下文窗口(LCW) llm作为基础模型。在171个具有挑战性的法律解释性问答(LIQA)案例中,ABCI-Filtered准确率达到了63.2%,优于RAG基线方法(56.1%),最先进的法学硕士如Claude 3.7(60.2%),以及ABCI-Inferred(60.8%)和ABCI-Original(56.7%)。值得注意的是,与之前需要微调的方法不同,ABCI-Filtered仅使用零采样推理就优于之前的方法。在另一个使用相对简单的建筑规范QA数据集的实验中,ABCI-Filtered和ABCI-Inferred的性能分别优于其他方法(分别为79.6%和80.0%),证实了使用LIQA数据集的初始任务的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信