Xian’an Jin, Tianlong Ma, Weiling Yang, Gang Zhang
{"title":"(F1,F)-partition of plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles","authors":"Xian’an Jin, Tianlong Ma, Weiling Yang, Gang Zhang","doi":"10.1016/j.dam.2025.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partition of a graph <span><math><mi>G</mi></math></span> is a partition of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> into two sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is a forest of maximum degree at most <span><math><mi>k</mi></math></span> and <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is just a forest. A plane graph is a planar graph <span><math><mi>G</mi></math></span> together with an embedding of <span><math><mi>G</mi></math></span> into the Euclidean plane. A cycle <span><math><mi>C</mi></math></span> of a plane graph is ext-triangular if it is adjacent to a triangle <span><math><mi>T</mi></math></span> such that the interiors of <span><math><mi>C</mi></math></span> and <span><math><mi>T</mi></math></span> have no intersection. Recently, Liu and Yu (2020) proposed a problem whether planar graphs without cycles of length from 4 to 7 are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. In this paper, we prove that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. As a consequence, planar graphs without cycles of length 4, 5 or <span><math><mi>l</mi></math></span> for any <span><math><mrow><mi>l</mi><mo>∈</mo><mrow><mo>{</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></mrow></mrow></math></span> are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 7-23"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An -partition of a graph is a partition of into two sets and such that is a forest of maximum degree at most and is just a forest. A plane graph is a planar graph together with an embedding of into the Euclidean plane. A cycle of a plane graph is ext-triangular if it is adjacent to a triangle such that the interiors of and have no intersection. Recently, Liu and Yu (2020) proposed a problem whether planar graphs without cycles of length from 4 to 7 are -partitionable. In this paper, we prove that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are -partitionable. As a consequence, planar graphs without cycles of length 4, 5 or for any are -partitionable.
图G的(Fk,F)划分是将V(G)划分为两个集合V1和V2,使得G[V1]是最大度为k的森林,而G[V2]就是森林。平面图是一个平面图G连同G在欧几里得平面上的嵌入。如果一个平面图形的环C与一个三角形T相邻,使得C和T的内部没有交集,那么它就是外三角形。最近,Liu and Yu(2020)提出了一个不包含长度为4 ~ 7的环的平面图是否(F0,F)可分的问题。本文证明了无4环、5环和无下三角7环的平面图形是(F1,F)可分的。因此,对于任意l∈{7,8},不存在长度为4,5或l的环的平面图是(F1,F)可分的。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.