{"title":"ML degrees of Brownian motion tree models: Star trees and root invariance","authors":"Jane Ivy Coons , Shelby Cox , Aida Maraj , Ikenna Nometa","doi":"10.1016/j.jsc.2025.102482","DOIUrl":null,"url":null,"abstract":"<div><div>A Brownian motion tree (BMT) model is a Gaussian model whose associated set of covariance matrices is linearly constrained according to common ancestry in a phylogenetic tree. We study the complexity of inferring the maximum likelihood (ML) estimator for a BMT model by computing its ML-degree. Our main result is that the ML-degree of the BMT model on a star tree with <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> leaves is <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, which was previously conjectured by Améndola and Zwiernik. We also prove that the ML-degree of a BMT model is independent of the choice of the root. The proofs rely on the toric geometry of concentration matrices in a BMT model. Toward this end, we produce a combinatorial formula for the determinant of the concentration matrix of a BMT model, which generalizes the Cayley-Prüfer theorem to complete graphs with weights given by a tree.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102482"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000641","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A Brownian motion tree (BMT) model is a Gaussian model whose associated set of covariance matrices is linearly constrained according to common ancestry in a phylogenetic tree. We study the complexity of inferring the maximum likelihood (ML) estimator for a BMT model by computing its ML-degree. Our main result is that the ML-degree of the BMT model on a star tree with leaves is , which was previously conjectured by Améndola and Zwiernik. We also prove that the ML-degree of a BMT model is independent of the choice of the root. The proofs rely on the toric geometry of concentration matrices in a BMT model. Toward this end, we produce a combinatorial formula for the determinant of the concentration matrix of a BMT model, which generalizes the Cayley-Prüfer theorem to complete graphs with weights given by a tree.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.