ML degrees of Brownian motion tree models: Star trees and root invariance

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jane Ivy Coons , Shelby Cox , Aida Maraj , Ikenna Nometa
{"title":"ML degrees of Brownian motion tree models: Star trees and root invariance","authors":"Jane Ivy Coons ,&nbsp;Shelby Cox ,&nbsp;Aida Maraj ,&nbsp;Ikenna Nometa","doi":"10.1016/j.jsc.2025.102482","DOIUrl":null,"url":null,"abstract":"<div><div>A Brownian motion tree (BMT) model is a Gaussian model whose associated set of covariance matrices is linearly constrained according to common ancestry in a phylogenetic tree. We study the complexity of inferring the maximum likelihood (ML) estimator for a BMT model by computing its ML-degree. Our main result is that the ML-degree of the BMT model on a star tree with <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> leaves is <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, which was previously conjectured by Améndola and Zwiernik. We also prove that the ML-degree of a BMT model is independent of the choice of the root. The proofs rely on the toric geometry of concentration matrices in a BMT model. Toward this end, we produce a combinatorial formula for the determinant of the concentration matrix of a BMT model, which generalizes the Cayley-Prüfer theorem to complete graphs with weights given by a tree.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102482"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000641","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A Brownian motion tree (BMT) model is a Gaussian model whose associated set of covariance matrices is linearly constrained according to common ancestry in a phylogenetic tree. We study the complexity of inferring the maximum likelihood (ML) estimator for a BMT model by computing its ML-degree. Our main result is that the ML-degree of the BMT model on a star tree with n+1 leaves is 2n+12n3, which was previously conjectured by Améndola and Zwiernik. We also prove that the ML-degree of a BMT model is independent of the choice of the root. The proofs rely on the toric geometry of concentration matrices in a BMT model. Toward this end, we produce a combinatorial formula for the determinant of the concentration matrix of a BMT model, which generalizes the Cayley-Prüfer theorem to complete graphs with weights given by a tree.
布朗运动树模型的ML度:星树和根不变性
布朗运动树(BMT)模型是一种高斯模型,其相关的协方差矩阵集是根据系统发育树的共同祖先线性约束的。我们研究了通过计算最大似然度来推断BMT模型最大似然估计量的复杂性。我们的主要结果是,在有n+1个叶子的星树上,BMT模型的ml度为2n+1−2n−3,这是amsamundola和Zwiernik先前推测的。我们还证明了BMT模型的ml度与根的选择无关。这些证明依赖于BMT模型中浓度矩阵的环几何。为此,我们提出了一个BMT模型浓度矩阵行列式的组合公式,它将cayley - pr fer定理推广到权值由树给出的完全图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信