A hybrid deep learning framework for global irradiance prediction using fuzzy C-Means, CNN-WNN, and Informer models

IF 6.5 Q2 ENGINEERING, ENVIRONMENTAL
Walid Mchara , Lazhar Manai , Mohamed Abdellatif Khalfa , Monia Raissi , Wissem Dimassi , Salah Hannachi
{"title":"A hybrid deep learning framework for global irradiance prediction using fuzzy C-Means, CNN-WNN, and Informer models","authors":"Walid Mchara ,&nbsp;Lazhar Manai ,&nbsp;Mohamed Abdellatif Khalfa ,&nbsp;Monia Raissi ,&nbsp;Wissem Dimassi ,&nbsp;Salah Hannachi","doi":"10.1016/j.clet.2025.101061","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) is revolutionizing solar energy forecasting, enabling precise irradiance prediction for electric solar vehicles (ESVs) to optimize energy efficiency and extend driving range.</div><div>This study introduces a novel AI-powered hybrid deep learning framework that synergistically combines fuzzy C-means (FCM) clustering, convolutional neural networks (CNNs), wavelet neural networks (WNNs), and an Informer model to achieve superior accuracy. The FCM layer first groups meteorological data into coherent clusters, reducing noise and isolating localized patterns. CNNs then extract high-level spatial features from each cluster, while WNNs decode multi-resolution irradiance dynamics, capturing both abrupt fluctuations and gradual trends. Finally, the Informer model — equipped with attention mechanisms — identifies long-term temporal dependencies, selecting the most informative timesteps for accurate prediction.</div><div>The study’s experiments were conducted using a comprehensive dataset sourced from the Photovoltaic Geographical Information System (PVGIS). This dataset spans from January 1, 2005, to December 31, 2020. Data was collected from four climatically distinct cities in the USA: Phoenix, Arizona (desert); Miami, Florida (tropical); Denver, Colorado (semi-arid, high altitude); and Seattle, Washington (oceanic). The proposed CNN-WNN-Informer model achieved average reductions across all cities of 67.7% in t-statistic, 73.9% in Mean Absolute Percentage Error (MAPE), 82.5% in Mean Absolute Bias Error (MABE), and 59.0% in Root Mean Square Error (RMSE), underscoring its significant improvements. By minimizing prediction uncertainty, the framework empowers smarter battery utilization and route planning, bridging the gap between renewable energy and sustainable mobility. This robust performance suggests its potential for integration into intelligent transportation systems and smart grid applications, paving the way for more resilient and energy-efficient urban environments.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"28 ","pages":"Article 101061"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is revolutionizing solar energy forecasting, enabling precise irradiance prediction for electric solar vehicles (ESVs) to optimize energy efficiency and extend driving range.
This study introduces a novel AI-powered hybrid deep learning framework that synergistically combines fuzzy C-means (FCM) clustering, convolutional neural networks (CNNs), wavelet neural networks (WNNs), and an Informer model to achieve superior accuracy. The FCM layer first groups meteorological data into coherent clusters, reducing noise and isolating localized patterns. CNNs then extract high-level spatial features from each cluster, while WNNs decode multi-resolution irradiance dynamics, capturing both abrupt fluctuations and gradual trends. Finally, the Informer model — equipped with attention mechanisms — identifies long-term temporal dependencies, selecting the most informative timesteps for accurate prediction.
The study’s experiments were conducted using a comprehensive dataset sourced from the Photovoltaic Geographical Information System (PVGIS). This dataset spans from January 1, 2005, to December 31, 2020. Data was collected from four climatically distinct cities in the USA: Phoenix, Arizona (desert); Miami, Florida (tropical); Denver, Colorado (semi-arid, high altitude); and Seattle, Washington (oceanic). The proposed CNN-WNN-Informer model achieved average reductions across all cities of 67.7% in t-statistic, 73.9% in Mean Absolute Percentage Error (MAPE), 82.5% in Mean Absolute Bias Error (MABE), and 59.0% in Root Mean Square Error (RMSE), underscoring its significant improvements. By minimizing prediction uncertainty, the framework empowers smarter battery utilization and route planning, bridging the gap between renewable energy and sustainable mobility. This robust performance suggests its potential for integration into intelligent transportation systems and smart grid applications, paving the way for more resilient and energy-efficient urban environments.
基于模糊c均值、CNN-WNN和Informer模型的全球辐照度预测混合深度学习框架
人工智能(AI)正在彻底改变太阳能预测,为优化能源效率和延长行驶里程,可以精确预测电动太阳能汽车(esv)的辐照度。本研究引入了一种新的人工智能驱动的混合深度学习框架,该框架协同结合了模糊c均值(FCM)聚类、卷积神经网络(cnn)、小波神经网络(wnn)和一个Informer模型,以达到更高的精度。FCM层首先将气象数据分组成相干簇,降低噪声并隔离局部模式。然后cnn从每个聚类中提取高级空间特征,而wnn解码多分辨率辐照度动态,捕获突变波动和渐变趋势。最后,Informer模型——配备了注意机制——识别长期时间依赖性,选择最具信息量的时间步进行准确预测。本研究的实验使用来自光伏地理信息系统(PVGIS)的综合数据集进行。该数据集从2005年1月1日至2020年12月31日。数据是从美国四个气候不同的城市收集的:亚利桑那州凤凰城(沙漠);迈阿密,佛罗里达州(热带);科罗拉多州丹佛(半干旱,高海拔);华盛顿州西雅图(大洋航空)。所提出的cnn - wnn - inforformer模型在所有城市的t统计量平均降低67.7%,平均绝对百分比误差(MAPE)平均降低73.9%,平均绝对偏差误差(MABE)平均降低82.5%,均方根误差(RMSE)平均降低59.0%,显示出显著的改进。通过最大限度地减少预测的不确定性,该框架可以实现更智能的电池利用和路线规划,弥合可再生能源和可持续交通之间的差距。这种强大的性能表明,它有潜力集成到智能交通系统和智能电网应用中,为更有弹性和更节能的城市环境铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信