CeO2 Promoted CuO/MgO-Al2O3 Catalyst with Enhanced Activity and Water-Resistance for CO Oxidation

IF 6.7 Q1 ENGINEERING, ENVIRONMENTAL
Kailong Ye, Shaohua Xie*, Xing Zhang, Daekun Kim, Jeremia Loukusa, Lu Ma, Steven N. Ehrlich and Fudong Liu*, 
{"title":"CeO2 Promoted CuO/MgO-Al2O3 Catalyst with Enhanced Activity and Water-Resistance for CO Oxidation","authors":"Kailong Ye,&nbsp;Shaohua Xie*,&nbsp;Xing Zhang,&nbsp;Daekun Kim,&nbsp;Jeremia Loukusa,&nbsp;Lu Ma,&nbsp;Steven N. Ehrlich and Fudong Liu*,&nbsp;","doi":"10.1021/acsestengg.5c00303","DOIUrl":null,"url":null,"abstract":"<p >Copper (Cu)-based catalysts have emerged as cost-effective and sustainable alternatives to noble metal systems (<i>e.g.</i>, Pt, Pd) for catalytic CO oxidation. However, their practical application is hindered by insufficient low-temperature activity and rapid deactivation under wet conditions containing moisture. To address these challenges, this work introduces CeO<sub>2</sub>-modified CuO/MgO-Al<sub>2</sub>O<sub>3</sub> (Cu-Ce/MA) catalysts, strategically designed to enhance the catalytic performance and water resistance simultaneously. These catalytic materials were evaluated for CO oxidation under both dry and humid conditions, revealing that CeO<sub>2</sub> modification significantly improves the low-temperature activity. Specifically, the optimal catalyst, Cu-30Ce/MA, achieved a 50% CO conversion temperature (<i>T</i><sub>50</sub>) of 151 °C, a marked reduction from 218 °C on Cu/MA reference catalyst. Furthermore, the water resistance improves in a CeO<sub>2</sub> content-dependent manner, with higher CeO<sub>2</sub> loadings imparting greater stability in humid environments. Detailed characterizations demonstrate that CeO<sub>2</sub> promotes the dispersion of CuO and stabilizes Cu sites, while also enhancing the low-temperature reducibility and CO adsorption capacity. Crucially, CeO<sub>2</sub> modification suppresses the competitive H<sub>2</sub>O adsorption, mitigating water-induced deactivation. These synergistic effects collectively rationalize the superior activity and durability of Cu-Ce/MA catalysts. By elucidating the dual role of CeO<sub>2</sub> in optimizing Cu-based systems, this study advances the rational design of cost-effective catalysts for real-world CO emission control, particularly under water-rich industrial conditions.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 8","pages":"2127–2137"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsestengg.5c00303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.5c00303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Copper (Cu)-based catalysts have emerged as cost-effective and sustainable alternatives to noble metal systems (e.g., Pt, Pd) for catalytic CO oxidation. However, their practical application is hindered by insufficient low-temperature activity and rapid deactivation under wet conditions containing moisture. To address these challenges, this work introduces CeO2-modified CuO/MgO-Al2O3 (Cu-Ce/MA) catalysts, strategically designed to enhance the catalytic performance and water resistance simultaneously. These catalytic materials were evaluated for CO oxidation under both dry and humid conditions, revealing that CeO2 modification significantly improves the low-temperature activity. Specifically, the optimal catalyst, Cu-30Ce/MA, achieved a 50% CO conversion temperature (T50) of 151 °C, a marked reduction from 218 °C on Cu/MA reference catalyst. Furthermore, the water resistance improves in a CeO2 content-dependent manner, with higher CeO2 loadings imparting greater stability in humid environments. Detailed characterizations demonstrate that CeO2 promotes the dispersion of CuO and stabilizes Cu sites, while also enhancing the low-temperature reducibility and CO adsorption capacity. Crucially, CeO2 modification suppresses the competitive H2O adsorption, mitigating water-induced deactivation. These synergistic effects collectively rationalize the superior activity and durability of Cu-Ce/MA catalysts. By elucidating the dual role of CeO2 in optimizing Cu-based systems, this study advances the rational design of cost-effective catalysts for real-world CO emission control, particularly under water-rich industrial conditions.

CeO2促进CuO/MgO-Al2O3催化剂增强CO氧化活性和耐水性
铜(Cu)基催化剂已成为贵金属系统(例如铂、钯)催化CO氧化的经济、可持续的替代品。然而,它们的实际应用受到低温活性不足和在含有水分的潮湿条件下快速失活的阻碍。为了解决这些挑战,本研究引入了ceo2修饰的CuO/MgO-Al2O3 (Cu-Ce/MA)催化剂,旨在同时提高催化性能和耐水性。在干燥和潮湿条件下对这些催化材料进行了CO氧化评价,结果表明CeO2改性显著提高了其低温活性。具体而言,最佳催化剂Cu- 30ce /MA的50% CO转化温度(T50)为151°C,比Cu/MA参考催化剂的218°C显著降低。此外,耐水性的提高与CeO2含量有关,在潮湿环境中,较高的CeO2负荷赋予了更大的稳定性。详细的表征表明,CeO2促进了CuO的分散,稳定了Cu位点,同时提高了低温还原性和CO吸附能力。关键是,CeO2修饰抑制了竞争性的H2O吸附,减轻了水诱导的失活。这些协同效应共同解释了Cu-Ce/MA催化剂优越的活性和耐久性。通过阐明CeO2在优化cu基体系中的双重作用,本研究推进了现实世界CO排放控制催化剂的合理设计,特别是在富水工业条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信