Daniel R. Crocker*, Kevin M. Sutherland, Benjamin Freudenberg, Kimberly Alonso, Ann Pearson, Collin P. Ward and David T. Johnston*,
{"title":"Tracking Photo-Oxidation Reactions of Aquatic Organic Matter Using Triple Oxygen Isotopes","authors":"Daniel R. Crocker*, Kevin M. Sutherland, Benjamin Freudenberg, Kimberly Alonso, Ann Pearson, Collin P. Ward and David T. Johnston*, ","doi":"10.1021/acsearthspacechem.5c00057","DOIUrl":null,"url":null,"abstract":"<p >The three-isotope system of oxygen (<sup>16</sup>O, <sup>17</sup>O, <sup>18</sup>O) is a powerful tool to study environmental oxidation chemistry and cycling of oxygen-bearing species (e.g., sulfates, nitrates, carbonates, etc.). Despite its evident utility, little work has focused on extending the triple oxygen isotope (Δ’<sup>17</sup>O) tool to oxygen contained in organic matter (OM). This is largely due to methodological challenges with isolating OM-bound oxygen and preparing it for isotopic analysis. Herein, we report on a newly developed method for high-precision Δ’<sup>17</sup>O measurements of OM (Δ’<sup>17</sup>O precision of 0.020‰) and apply this technique to investigate partial photochemical oxidation of Suwannee River natural OM in air-equilibrated aquatic samples. Through this, we reveal that the oxygen isotope evolution of the Suwannee OM supports a model whereby OM partial photo-oxidation proceeds via one or more reactive oxygen intermediates. Our measurements further highlight the potential of triple oxygen isotope analyses on OM-bound oxygen to fingerprint OM oxidation pathways, redox chemistry, and source and synthesis reactions.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 7","pages":"1780–1790"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.5c00057","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The three-isotope system of oxygen (16O, 17O, 18O) is a powerful tool to study environmental oxidation chemistry and cycling of oxygen-bearing species (e.g., sulfates, nitrates, carbonates, etc.). Despite its evident utility, little work has focused on extending the triple oxygen isotope (Δ’17O) tool to oxygen contained in organic matter (OM). This is largely due to methodological challenges with isolating OM-bound oxygen and preparing it for isotopic analysis. Herein, we report on a newly developed method for high-precision Δ’17O measurements of OM (Δ’17O precision of 0.020‰) and apply this technique to investigate partial photochemical oxidation of Suwannee River natural OM in air-equilibrated aquatic samples. Through this, we reveal that the oxygen isotope evolution of the Suwannee OM supports a model whereby OM partial photo-oxidation proceeds via one or more reactive oxygen intermediates. Our measurements further highlight the potential of triple oxygen isotope analyses on OM-bound oxygen to fingerprint OM oxidation pathways, redox chemistry, and source and synthesis reactions.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.