Xi Chen, Jing Li*, Li Chen, Xing Liu, Xuechen Jiao, Yaru Peng, Yuxin Huang and Guangyong Jin*,
{"title":"Multimode Ultrasensitive Optical Temperature Sensing Based on Upconversion Luminescence in BaNb2O6 Phosphor","authors":"Xi Chen, Jing Li*, Li Chen, Xing Liu, Xuechen Jiao, Yaru Peng, Yuxin Huang and Guangyong Jin*, ","doi":"10.1021/acsaom.5c00153","DOIUrl":null,"url":null,"abstract":"<p >Multimode and highly sensitive optical temperature measurements are the key technology to improve the temperature monitor. In this work, doping-concentration-optimized BaNb<sub>2</sub>O<sub>6</sub> materials show excellent temperature measurement performance, achieving multimode temperature measurement with self-calibration function upon a 980 nm laser diode pump. Four models of optically ultrasensitive temperature measurement are achieved in BaNb<sub>2</sub>O<sub>6</sub>: Yb<sup>3+</sup>/Er<sup>3+</sup> and Yb<sup>3+</sup>/Ho<sup>3+</sup> phosphors by making use of thermal coupling energy levels (Er<sup>3+</sup>: <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> and Ho<sup>3+</sup>: <sup>5</sup>F<sub>5</sub>) and nonthermal coupling energy levels (Er<sup>3+</sup>: <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub>, <sup>4</sup>F<sub>9/2</sub> and Ho<sup>3+</sup>: <sup>5</sup>F<sub>5</sub>, <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub>). In the BaNb<sub>2</sub>O<sub>6</sub>: 7.0% Yb<sup>3+</sup>/5.0% Er<sup>3+</sup> sample, we obtained maximum relative sensitivities (<i>S</i><sub>r</sub>) of <i>S</i><sub>r-g</sub> = 1.64% K<sup>–1</sup> and <i>S</i><sub>r-Er</sub> = 1.48% K<sup>–1</sup> at 298 K and maximum absolute sensitivities (<i>S</i><sub>a</sub>) of <i>S</i><sub>a-g</sub> = 0.33% K<sup>–1</sup> and <i>S</i><sub>a-Er</sub> = 0.113% K<sup>–1</sup> at 573 K corresponding to thermal coupling and nonthermal coupling energy levels, respectively. In the BaNb<sub>2</sub>O<sub>6</sub>: 7.0% Yb<sup>3+</sup>/0.5% Ho<sup>3+</sup> sample, maximum <i>S</i><sub>r</sub> levels of <i>S</i><sub>r-r</sub> = 0.64% K<sup>–1</sup> and <i>S</i><sub>r-Ho</sub> = 1.39% K<sup>–1</sup> at 298 K and maximum <i>S</i><sub>a</sub> levels of <i>S</i><sub>a-r</sub> = 0.375% K<sup>–1</sup> (298 K) and <i>S</i><sub>a-Ho</sub> = 1.25% K<sup>–1</sup> (498 K) are obtained simultaneously. Throughout all the modes in the testing temperature range, excellent temperature resolution is exhibited, achieving an optimal value of 0.016 K. The four optical temperature sensors are validated to own excellent resolution, repeatability, and accuracy. All the studies demonstrate that BaNb<sub>2</sub>O<sub>6</sub> is a promising candidate in the field of high-precision self-referencing multimode optical temperature measurements.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 6","pages":"1410–1421"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multimode and highly sensitive optical temperature measurements are the key technology to improve the temperature monitor. In this work, doping-concentration-optimized BaNb2O6 materials show excellent temperature measurement performance, achieving multimode temperature measurement with self-calibration function upon a 980 nm laser diode pump. Four models of optically ultrasensitive temperature measurement are achieved in BaNb2O6: Yb3+/Er3+ and Yb3+/Ho3+ phosphors by making use of thermal coupling energy levels (Er3+: 2H11/2/4S3/2 and Ho3+: 5F5) and nonthermal coupling energy levels (Er3+: 2H11/2/4S3/2, 4F9/2 and Ho3+: 5F5, 5F4/5S2). In the BaNb2O6: 7.0% Yb3+/5.0% Er3+ sample, we obtained maximum relative sensitivities (Sr) of Sr-g = 1.64% K–1 and Sr-Er = 1.48% K–1 at 298 K and maximum absolute sensitivities (Sa) of Sa-g = 0.33% K–1 and Sa-Er = 0.113% K–1 at 573 K corresponding to thermal coupling and nonthermal coupling energy levels, respectively. In the BaNb2O6: 7.0% Yb3+/0.5% Ho3+ sample, maximum Sr levels of Sr-r = 0.64% K–1 and Sr-Ho = 1.39% K–1 at 298 K and maximum Sa levels of Sa-r = 0.375% K–1 (298 K) and Sa-Ho = 1.25% K–1 (498 K) are obtained simultaneously. Throughout all the modes in the testing temperature range, excellent temperature resolution is exhibited, achieving an optimal value of 0.016 K. The four optical temperature sensors are validated to own excellent resolution, repeatability, and accuracy. All the studies demonstrate that BaNb2O6 is a promising candidate in the field of high-precision self-referencing multimode optical temperature measurements.
期刊介绍:
ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.