Bin Sheng, Ying Zhang, Kexin Yang, Xiaobin Wen, Zhihao Lin, Zhijian Wu, Yaowei Zhang, Jie Zhou, Xueling Ye*, Miao Wang, Ge Chen, Guangyang Liu*, Xiaomin Xu, Xin Yang, Bining Jiao and Donghui Xu*,
{"title":"MPN-Modified Bimetallic ZIF Nanopesticide Enhances Dinotefuran Loading Efficiency and Synergistically Controls Pesticide Residue and Insecticidal Activity","authors":"Bin Sheng, Ying Zhang, Kexin Yang, Xiaobin Wen, Zhihao Lin, Zhijian Wu, Yaowei Zhang, Jie Zhou, Xueling Ye*, Miao Wang, Ge Chen, Guangyang Liu*, Xiaomin Xu, Xin Yang, Bining Jiao and Donghui Xu*, ","doi":"10.1021/acsagscitech.5c00311","DOIUrl":null,"url":null,"abstract":"<p >Neonicotinoid insecticides face a number of challenges in improving the efficacy and mitigating resistance in <i>Bemisia tabaci</i>. The zeolitic imidazolate framework (ZIF) in metal–organic frameworks (MOFs) has attracted much attention in the field of nanopesticide preparation and controlled release due to its simple preparation. However, monometallic ZIFs have a simple structure and low loading capacity. To solve this problem, we doped Fe into ZIF-L and successfully synthesized a cross-stacked bimetallic ZIF nanocarrier, which can effectively load and release dinotefuran (DNF). Subsequent preparation of Zn-Fe-ZIF@DNF@MPN after encapsulation using metal–phenolic networks (MPNs) increased the DNF loading to 23.74% and achieved >99% release within 24 h. Zn-Fe-ZIF@DNF@MPN has greater resistance to UV light, retention on vegetable leaves, and resistance to rainwater washout. Dynamic residue analysis confirmed its effectiveness and persistence. In addition, it achieved 86.95% mortality against <i>Bemisia tabaci</i> without inhibiting cabbage seed germination. This work is of strategic importance for the development of a functional and environmentally friendly smart nanopesticide.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1516–1528"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neonicotinoid insecticides face a number of challenges in improving the efficacy and mitigating resistance in Bemisia tabaci. The zeolitic imidazolate framework (ZIF) in metal–organic frameworks (MOFs) has attracted much attention in the field of nanopesticide preparation and controlled release due to its simple preparation. However, monometallic ZIFs have a simple structure and low loading capacity. To solve this problem, we doped Fe into ZIF-L and successfully synthesized a cross-stacked bimetallic ZIF nanocarrier, which can effectively load and release dinotefuran (DNF). Subsequent preparation of Zn-Fe-ZIF@DNF@MPN after encapsulation using metal–phenolic networks (MPNs) increased the DNF loading to 23.74% and achieved >99% release within 24 h. Zn-Fe-ZIF@DNF@MPN has greater resistance to UV light, retention on vegetable leaves, and resistance to rainwater washout. Dynamic residue analysis confirmed its effectiveness and persistence. In addition, it achieved 86.95% mortality against Bemisia tabaci without inhibiting cabbage seed germination. This work is of strategic importance for the development of a functional and environmentally friendly smart nanopesticide.