In Situ Growth of Ruddlesden–Popper Perovskite Nanocrystals in Carbon Nanotubes for Brain-Inspired Optoelectronic Synapses

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ravinder Sharma, Leaford Nathan Henderson, Sonali Das, Rajkumar Gurjar, Zakariya Mohayman, Syed Mahedi Hasan, Akihiro Kushima and Jayan Thomas*, 
{"title":"In Situ Growth of Ruddlesden–Popper Perovskite Nanocrystals in Carbon Nanotubes for Brain-Inspired Optoelectronic Synapses","authors":"Ravinder Sharma,&nbsp;Leaford Nathan Henderson,&nbsp;Sonali Das,&nbsp;Rajkumar Gurjar,&nbsp;Zakariya Mohayman,&nbsp;Syed Mahedi Hasan,&nbsp;Akihiro Kushima and Jayan Thomas*,&nbsp;","doi":"10.1021/acsanm.5c01795","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional Ruddlesden–Popper perovskites have emerged as promising materials for optoelectronic synapse applications due to their unique quantum confinement effects, tunable band gap, excellent photoresponse, and enhanced environmental stability. Their layered structure enables efficient charge transport and light absorption, which are essential for mimicking synaptic functionalities. Here, we report a photonic synapse device using Ruddlesden–Popper perovskite nanocrystals (RPNCs) grown inside the inner channels of multiwalled carbon nanotubes (MWCNTs), a unique approach that enhances the environmental stability and charge transfer efficiency. The fabricated device demonstrates synaptic functionalities, including paired-pulse facilitation (PPF), synaptic time-dependent plasticity (STDP), and long-term potentiation and depression (LTP/LTD), with memory retention exceeding 1000 s. Furthermore, our CNN-based image recognition study achieved 92% accuracy on MNIST and 85% accuracy on F-MNIST, highlighting the potential for neuromorphic computing applications. This approach offers significant advantages in material stability and low-power operation, making it a promising candidate for future optoelectronic and artificial vision systems.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 28","pages":"14072–14082"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01795","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional Ruddlesden–Popper perovskites have emerged as promising materials for optoelectronic synapse applications due to their unique quantum confinement effects, tunable band gap, excellent photoresponse, and enhanced environmental stability. Their layered structure enables efficient charge transport and light absorption, which are essential for mimicking synaptic functionalities. Here, we report a photonic synapse device using Ruddlesden–Popper perovskite nanocrystals (RPNCs) grown inside the inner channels of multiwalled carbon nanotubes (MWCNTs), a unique approach that enhances the environmental stability and charge transfer efficiency. The fabricated device demonstrates synaptic functionalities, including paired-pulse facilitation (PPF), synaptic time-dependent plasticity (STDP), and long-term potentiation and depression (LTP/LTD), with memory retention exceeding 1000 s. Furthermore, our CNN-based image recognition study achieved 92% accuracy on MNIST and 85% accuracy on F-MNIST, highlighting the potential for neuromorphic computing applications. This approach offers significant advantages in material stability and low-power operation, making it a promising candidate for future optoelectronic and artificial vision systems.

Abstract Image

在碳纳米管中原位生长用于脑启发光电突触的rudlesden - popper钙钛矿纳米晶体
二维Ruddlesden-Popper钙钛矿由于其独特的量子约束效应、可调谐的带隙、优异的光响应和增强的环境稳定性而成为光电突触应用的有前途的材料。它们的分层结构能够实现高效的电荷传输和光吸收,这对于模拟突触功能至关重要。在这里,我们报道了一种利用Ruddlesden-Popper钙钛矿纳米晶体(RPNCs)生长在多壁碳纳米管(MWCNTs)内部通道内的光子突触装置,这种独特的方法提高了环境稳定性和电荷转移效率。该装置具有突触功能,包括对脉冲促进(PPF)、突触时间依赖性可塑性(STDP)和长期增强和抑制(LTP/LTD),记忆保持时间超过1000秒。此外,我们基于cnn的图像识别研究在MNIST上达到92%的准确率,在F-MNIST上达到85%的准确率,突出了神经形态计算应用的潜力。这种方法在材料稳定性和低功耗操作方面具有显着优势,使其成为未来光电和人工视觉系统的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信