Nano-Hydroxyapatite Improves Drought Resilience in Soybean: Coordinated Physiological Adaptation and Soil Phosphorus Management for Sustainable Cropping Systems
{"title":"Nano-Hydroxyapatite Improves Drought Resilience in Soybean: Coordinated Physiological Adaptation and Soil Phosphorus Management for Sustainable Cropping Systems","authors":"Tianyu Zhang, Wenxuan Zhang, Qile Fang, Yungui Li, Zihao Zhao, Chuanxin Ma, Yuan Gao and Qingqing Li*, ","doi":"10.1021/acsagscitech.5c00217","DOIUrl":null,"url":null,"abstract":"<p >Under global warming scenarios, where drought and water scarcity are becoming more prevalent, this study investigated the efficacy of the nanophosphorus material (n-P) in enhancing soybean resilience under soil water restriction. Compared to conventional ionic phosphate fertilizer (i-P), n-P application significantly improved soybean growth under water-limited conditions, achieving a near-normal growth status. The n-P treatments increased plant fresh weight by 21.2–30.2% relative to i-P, demonstrating superior growth promotion. Physiological analysis revealed that n-P enhanced stress adaptation through the modulation of antioxidant enzyme activities, indicating improved oxidative stress management. Importantly, n-P application boosted reproductive success with 62.0% higher pod fresh weight and 21.5% increased total protein content compared to i-P. Postharvest soil analysis showed additional benefits of n-P fertilization, including 69% lower residual Olsen-P and ameliorated soil acidification compared with the i-P group. These findings provide mechanistic insights into nanofertilizer-mediated plant stress adaptation and highlight the dual benefits of n-P in sustainable crop production and soil health maintenance.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1442–1451"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under global warming scenarios, where drought and water scarcity are becoming more prevalent, this study investigated the efficacy of the nanophosphorus material (n-P) in enhancing soybean resilience under soil water restriction. Compared to conventional ionic phosphate fertilizer (i-P), n-P application significantly improved soybean growth under water-limited conditions, achieving a near-normal growth status. The n-P treatments increased plant fresh weight by 21.2–30.2% relative to i-P, demonstrating superior growth promotion. Physiological analysis revealed that n-P enhanced stress adaptation through the modulation of antioxidant enzyme activities, indicating improved oxidative stress management. Importantly, n-P application boosted reproductive success with 62.0% higher pod fresh weight and 21.5% increased total protein content compared to i-P. Postharvest soil analysis showed additional benefits of n-P fertilization, including 69% lower residual Olsen-P and ameliorated soil acidification compared with the i-P group. These findings provide mechanistic insights into nanofertilizer-mediated plant stress adaptation and highlight the dual benefits of n-P in sustainable crop production and soil health maintenance.