Homologous Heterointerfaces and Interfacial Chemical Bonding for Greatly Improved Initial Coulombic Efficiency in Sodium Storage

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liang Cao*, Mingjing Chu, Xin Xu, Wenqing Zhao, Yue Dai, Xianglai Cui, Qingyu Li, Huilong Dong* and Hongbo Geng*, 
{"title":"Homologous Heterointerfaces and Interfacial Chemical Bonding for Greatly Improved Initial Coulombic Efficiency in Sodium Storage","authors":"Liang Cao*,&nbsp;Mingjing Chu,&nbsp;Xin Xu,&nbsp;Wenqing Zhao,&nbsp;Yue Dai,&nbsp;Xianglai Cui,&nbsp;Qingyu Li,&nbsp;Huilong Dong* and Hongbo Geng*,&nbsp;","doi":"10.1021/acssuschemeng.5c02903","DOIUrl":null,"url":null,"abstract":"<p >Transition metal chalcogenide (TMC), an appealing anode alternative for high-energy-density sodium-ion batteries (SIBs), still encounters considerable challenges in practical applications, such as poor reaction reversibility, sluggish Na<sup>+</sup> transport, the notorious shuttle effect, and inferior structural stability. Herein, we propose an ambidextrous approach of internal homologous heterointerface (Ni<sub>3</sub>S<sub>2</sub>/Ni<sub>9</sub>S<sub>8</sub>) engineering and exterior interfacial chemical bonding (Ni–S–C) modulation to settle the above bottlenecks. In this configuration, a built-in electric field inside the homologous heterostructure enhances charge transport, reduces the Na diffusion barrier, and facilitates mass transfer. Meanwhile, the interfacial chemical bonding between NiS<sub><i>x</i></sub> and the outer graphene scaffold effectively stabilizes the soluble NaPS and improves the durability of the structure, resulting in high reaction reversibility and a desirable cycle lifespan. Consequently, the prepared electrode exhibits a remarkable ICE value (94%) with a high specific capacity (366.9 mAh g<sup>–1</sup> at 10 A g<sup>–1</sup> after 1200 cycles). Additionally, the working mechanism is comprehensively revealed by combining <i>in situ</i> analysis and theoretical calculations. This study provides a light way to prepare elaborate TMC materials for advanced SIBs.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 29","pages":"11380–11393"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02903","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal chalcogenide (TMC), an appealing anode alternative for high-energy-density sodium-ion batteries (SIBs), still encounters considerable challenges in practical applications, such as poor reaction reversibility, sluggish Na+ transport, the notorious shuttle effect, and inferior structural stability. Herein, we propose an ambidextrous approach of internal homologous heterointerface (Ni3S2/Ni9S8) engineering and exterior interfacial chemical bonding (Ni–S–C) modulation to settle the above bottlenecks. In this configuration, a built-in electric field inside the homologous heterostructure enhances charge transport, reduces the Na diffusion barrier, and facilitates mass transfer. Meanwhile, the interfacial chemical bonding between NiSx and the outer graphene scaffold effectively stabilizes the soluble NaPS and improves the durability of the structure, resulting in high reaction reversibility and a desirable cycle lifespan. Consequently, the prepared electrode exhibits a remarkable ICE value (94%) with a high specific capacity (366.9 mAh g–1 at 10 A g–1 after 1200 cycles). Additionally, the working mechanism is comprehensively revealed by combining in situ analysis and theoretical calculations. This study provides a light way to prepare elaborate TMC materials for advanced SIBs.

Abstract Image

同源异质界面和界面化学键大大提高了钠储存的初始库仑效率
过渡金属硫族化物(TMC)作为高能量密度钠离子电池(sib)极具吸引力的阳极替代品,在实际应用中仍然面临着相当大的挑战,如反应可逆性差、Na+传输缓慢、明显的穿梭效应和较差的结构稳定性。在此,我们提出了一种内部同源异质界面(Ni3S2/Ni9S8)工程和外部界面化学键(Ni-S-C)调制的双灵巧方法来解决上述瓶颈。在这种结构中,同源异质结构内部的内置电场增强了电荷输运,降低了Na扩散势垒,促进了传质。同时,NiSx与外部石墨烯支架之间的界面化学键有效地稳定了可溶性nap,提高了结构的耐久性,从而获得了高反应可逆性和理想的循环寿命。因此,所制备的电极具有显着的ICE值(94%)和高比容量(366.9 mAh g-1, 10 a g-1, 1200次循环后)。通过现场分析与理论计算相结合,全面揭示了其工作机理。本研究为先进sib制备精细TMC材料提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信