Nanochannel Highways in Hybrid Lamellar Membranes: Computational Simulation of Electric Field-Guided CO2 Transport via Molecular Sieving for Ultra-efficient Separation

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qikang Yin, Maohuai Wang, Caifeng Xia, Baojun Wei*, Zhaojie Wang, Siyuan Liu, Weifeng Lyu, Bo Liao, Zhe Sun* and Xiaoqing Lu*, 
{"title":"Nanochannel Highways in Hybrid Lamellar Membranes: Computational Simulation of Electric Field-Guided CO2 Transport via Molecular Sieving for Ultra-efficient Separation","authors":"Qikang Yin,&nbsp;Maohuai Wang,&nbsp;Caifeng Xia,&nbsp;Baojun Wei*,&nbsp;Zhaojie Wang,&nbsp;Siyuan Liu,&nbsp;Weifeng Lyu,&nbsp;Bo Liao,&nbsp;Zhe Sun* and Xiaoqing Lu*,&nbsp;","doi":"10.1021/acssuschemeng.5c03811","DOIUrl":null,"url":null,"abstract":"<p >The excessive weakness and strength of the interactions between graphene and g-C<sub>3</sub>N<sub>4</sub> with CO<sub>2</sub> pose challenges for CO<sub>2</sub> separation. Here, we proposed a gas separation nanochannel composed of the interlayer spacing in a two-dimensional graphene/g-C<sub>3</sub>N<sub>4</sub> (Gra/CN) membrane to solve the issue by molecular dynamics simulation. Graphene is a finely tuned electrostatic interaction membrane in direct contact with CO<sub>2</sub> within the nanochannel. Due to the proper interaction between Gra/CN and CO<sub>2</sub>, Gra/CN maintains high CO<sub>2</sub> permeance and selectivity under mixed gas conditions at different interlayer spacings, which confirms the good applicability for CO<sub>2</sub> separation. The nanochannel becomes a highway for CO<sub>2</sub> separation under an external electric field (<i>E</i><sub>field</sub>) of 1.0 × 10<sup>–4</sup> V·Å<sup>–1</sup> along the <i>z</i>-axis; the CO<sub>2</sub> permeance reaches 1.17 × 10<sup>–3</sup> mol·s<sup>–1</sup>·m<sup>–2</sup>·Pa<sup>–1</sup> through computational simulation, marking a substantial enhancement of approximately 60.3% relative to conditions without <i>E</i><sub>field</sub>. Simultaneously, the solubility coefficient rises to 4.48 × 10<sup>7</sup> mol·m<sup>–4</sup>·Pa as <i>E</i><sub>field</sub> in the <i>z</i>-axis. Moreover, the calculated energy consumption of the CO<sub>2</sub> separation is 0.017 GJ·ton<sup>–1</sup>, which is below the theoretical minimum value of 0.050 GJ·ton<sup>–1</sup>, demonstrating practical feasibility and efficiency in real-world applications. The results of this work highlight the significant role of the synergistic effect of the hybrid membrane gas separation nanochannel and <i>E</i><sub>field</sub> in enhancing CO<sub>2</sub> solubility and permeance, providing valuable theoretical guidance for CO<sub>2</sub> separation.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 31","pages":"12509–12522"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The excessive weakness and strength of the interactions between graphene and g-C3N4 with CO2 pose challenges for CO2 separation. Here, we proposed a gas separation nanochannel composed of the interlayer spacing in a two-dimensional graphene/g-C3N4 (Gra/CN) membrane to solve the issue by molecular dynamics simulation. Graphene is a finely tuned electrostatic interaction membrane in direct contact with CO2 within the nanochannel. Due to the proper interaction between Gra/CN and CO2, Gra/CN maintains high CO2 permeance and selectivity under mixed gas conditions at different interlayer spacings, which confirms the good applicability for CO2 separation. The nanochannel becomes a highway for CO2 separation under an external electric field (Efield) of 1.0 × 10–4 V·Å–1 along the z-axis; the CO2 permeance reaches 1.17 × 10–3 mol·s–1·m–2·Pa–1 through computational simulation, marking a substantial enhancement of approximately 60.3% relative to conditions without Efield. Simultaneously, the solubility coefficient rises to 4.48 × 107 mol·m–4·Pa as Efield in the z-axis. Moreover, the calculated energy consumption of the CO2 separation is 0.017 GJ·ton–1, which is below the theoretical minimum value of 0.050 GJ·ton–1, demonstrating practical feasibility and efficiency in real-world applications. The results of this work highlight the significant role of the synergistic effect of the hybrid membrane gas separation nanochannel and Efield in enhancing CO2 solubility and permeance, providing valuable theoretical guidance for CO2 separation.

Abstract Image

混合层状膜中的纳米通道高速公路:电场引导CO2通过分子筛进行超高效分离的计算模拟
石墨烯和g-C3N4与CO2的相互作用强度过大或过弱,给CO2的分离带来了挑战。本文提出了一种在二维石墨烯/g-C3N4 (Gra/CN)膜上由层间间距组成的气体分离纳米通道,通过分子动力学模拟解决了这一问题。石墨烯是一种精细调谐的静电相互作用膜,与纳米通道内的二氧化碳直接接触。由于Gra/CN与CO2的适当相互作用,在不同层间距的混合气体条件下,Gra/CN都保持了较高的CO2渗透率和选择性,证实了Gra/CN对CO2分离的良好适用性。在沿z轴方向1.0 × 10-4 V·Å-1的外电场下,纳米通道成为CO2分离的高速公路;通过计算模拟,CO2透过率达到1.17 × 10-3 mol·s-1·m-2·Pa-1,较无Efield条件大幅提高约60.3%。同时,在z轴上Efield的溶解度系数上升到4.48 × 107 mol·m-4·Pa。计算得到的CO2分离能耗为0.017 GJ·t - 1,低于理论最小值0.050 GJ·t - 1,在实际应用中具有可行性和高效性。本研究结果突出了混合膜气体分离纳米通道和Efield的协同效应在提高CO2溶解度和渗透率方面的重要作用,为CO2分离提供了有价值的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信