2D ferroelectric narrow-bandgap semiconductor Wurtzite’ type α-In2Se3 and its silicon-compatible growth

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuxuan Jiang, Xingkun Ning, Renhui Liu, Kepeng Song, Sajjad Ali, Haoyue Deng, Yizhuo Li, Biaohong Huang, Jianhang Qiu, Xiaofei Zhu, Zhen Fan, Qiankun Li, Chengbing Qin, Fei Xue, Teng Yang, Bing Li, Gang Liu, Weijin Hu, Lain-Jong Li, Zhidong Zhang
{"title":"2D ferroelectric narrow-bandgap semiconductor Wurtzite’ type α-In2Se3 and its silicon-compatible growth","authors":"Yuxuan Jiang, Xingkun Ning, Renhui Liu, Kepeng Song, Sajjad Ali, Haoyue Deng, Yizhuo Li, Biaohong Huang, Jianhang Qiu, Xiaofei Zhu, Zhen Fan, Qiankun Li, Chengbing Qin, Fei Xue, Teng Yang, Bing Li, Gang Liu, Weijin Hu, Lain-Jong Li, Zhidong Zhang","doi":"10.1038/s41467-025-62822-7","DOIUrl":null,"url":null,"abstract":"<p>2D van der Waals ferroelectrics, particularly <i>α</i>-In<sub>2</sub>Se<sub>3</sub>, have emerged as an attractive building block for next-generation information storage technologies due to their moderate band gap and robust ferroelectricity stabilized by dipole locking. <i>α</i>-In<sub>2</sub>Se<sub>3</sub> can adopt either the distorted zincblende or wurtzite structures; however, the wurtzite phase has yet to be experimentally validated, and its large-scale synthesis poses significant challenges. Here, we report an in-situ transport growth of centimeter-scale wurtzite type <i>α</i>-In<sub>2</sub>Se<sub>3</sub> films directly on SiO<sub>2</sub> substrates using a process combining pulsed laser deposition and chemical vapor deposition. We demonstrate that it is a narrow bandgap ferroelectric semiconductor, featuring a Curie temperature exceeding 620 K, a tunable bandgap (0.8–1.6 eV) modulated by charged domain walls, and a large optical absorption coefficient of 1.3 × 10<sup>6</sup>/cm. Moreover, light absorption promotes the dynamic conductance range, linearity, and symmetry of the synapse devices, leading to a high recognition accuracy of 92.3% in a supervised pattern classification task for neuromorphic computing. Our findings demonstrate a ferroelectric polymorphism of In<sub>2</sub>Se<sub>3</sub>, highlighting its potential in ferroelectric synapses for neuromorphic computing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62822-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

2D van der Waals ferroelectrics, particularly α-In2Se3, have emerged as an attractive building block for next-generation information storage technologies due to their moderate band gap and robust ferroelectricity stabilized by dipole locking. α-In2Se3 can adopt either the distorted zincblende or wurtzite structures; however, the wurtzite phase has yet to be experimentally validated, and its large-scale synthesis poses significant challenges. Here, we report an in-situ transport growth of centimeter-scale wurtzite type α-In2Se3 films directly on SiO2 substrates using a process combining pulsed laser deposition and chemical vapor deposition. We demonstrate that it is a narrow bandgap ferroelectric semiconductor, featuring a Curie temperature exceeding 620 K, a tunable bandgap (0.8–1.6 eV) modulated by charged domain walls, and a large optical absorption coefficient of 1.3 × 106/cm. Moreover, light absorption promotes the dynamic conductance range, linearity, and symmetry of the synapse devices, leading to a high recognition accuracy of 92.3% in a supervised pattern classification task for neuromorphic computing. Our findings demonstrate a ferroelectric polymorphism of In2Se3, highlighting its potential in ferroelectric synapses for neuromorphic computing.

Abstract Image

二维铁电窄带隙半导体纤锌矿型α-In2Se3及其硅相容生长
二维范德华铁电体,特别是α-In2Se3,由于其适度的带隙和偶极子锁定稳定的强大铁电性,已成为下一代信息存储技术的有吸引力的构建块。α-In2Se3可以采用变形锌闪锌矿或纤锌矿结构;然而,纤锌矿相尚未经过实验验证,其大规模合成带来了重大挑战。本文采用脉冲激光沉积和化学气相沉积相结合的方法,直接在SiO2衬底上原位输运生长了厘米级纤锌矿型α-In2Se3薄膜。我们证明了它是一种窄带隙的铁电半导体,具有居里温度超过620 K,带隙可调(0.8-1.6 eV),可被带电畴壁调制,光学吸收系数高达1.3 × 106/cm。此外,光吸收促进突触装置的动态电导范围,线性和对称性,导致在神经形态计算的监督模式分类任务中具有92.3%的高识别准确率。我们的研究结果证明了In2Se3的铁电多态性,突出了它在铁电突触中用于神经形态计算的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信