{"title":"Genome-Wide Screen using Escherichia coli Keio knockout mutant line reveals genes related to the antimicrobial properties of trans-Cinnamic Acid.","authors":"Merve Sezer Kürkçü, Kadriye Aslıhan Onat Taşdelen, Hatice Öztürkel Kabakaş, Esra Dibek, Anara Babayeva, Emine Sonay Elgin, Bekir Çöl","doi":"10.1007/s11274-025-04506-4","DOIUrl":null,"url":null,"abstract":"<p><p>Trans-cinnamic acid (tCA), a naturally occurring phenolic compound with antimicrobial activity, has poorly understood molecular mechanisms governing bacterial sensitivity and resistance. This study employed a genome-wide screen of Escherichia coli K-12 Keio single-gene knockout library (3,985 mutants) to identify genes modulating tCA response. Mutants were screened on LB medium supplemented with tCA (0-1.5 mg/mL). Phenotypic analysis identified 78 sensitive and 52 resistant mutants, validated through visual and quantitative assessments. Sequential spot assays under tCA stress confirmed classifications: sensitive mutants (e.g., ∆aaeX, ∆aaeA, ∆seqA, ∆vacJ, ∆dksA) displayed growth inhibition, while resistant mutants (e.g., ∆yhfK, ∆hofQ, ∆ybaT, ∆groL) exhibited enhanced growth. Mutants were categorized into High, Moderate, or Low Sensitivity/Resistance groups using integrated data from SGA Tools, genome-wide screening (GWS), and spot testing, yielding 18 High Sensitive (HS), 43 Moderate Sensitive (MS), 17 Low Sensitive (LS), 20 High Resistant (HR), 23 Moderate Resistant (MR), and 9 Low Resistant (LR) strains. Complementation of sensitive mutants (e.g., ∆dksA, ∆seqA, ∆aaeA, ∆vacJ) with wild-type alleles via plasmids restored growth and elevated minimum inhibitory concentrations (MICs), directly linking these genes to tCA sensitivity. Functional evaluation (EcoCyc, DAVID, STRING) revealed HS gene hits were associated with transcriptional regulation, metabolic activity, protein folding, DNA repair, transport, and membrane stability. Resistant gene hits were linked to stress response and detoxification pathways. This systems-level analysis elucidates the genetic basis of E. coli's response to tCA, identifying targets for antimicrobial strategies leveraging tCA or its derivatives.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 8","pages":"307"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04506-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trans-cinnamic acid (tCA), a naturally occurring phenolic compound with antimicrobial activity, has poorly understood molecular mechanisms governing bacterial sensitivity and resistance. This study employed a genome-wide screen of Escherichia coli K-12 Keio single-gene knockout library (3,985 mutants) to identify genes modulating tCA response. Mutants were screened on LB medium supplemented with tCA (0-1.5 mg/mL). Phenotypic analysis identified 78 sensitive and 52 resistant mutants, validated through visual and quantitative assessments. Sequential spot assays under tCA stress confirmed classifications: sensitive mutants (e.g., ∆aaeX, ∆aaeA, ∆seqA, ∆vacJ, ∆dksA) displayed growth inhibition, while resistant mutants (e.g., ∆yhfK, ∆hofQ, ∆ybaT, ∆groL) exhibited enhanced growth. Mutants were categorized into High, Moderate, or Low Sensitivity/Resistance groups using integrated data from SGA Tools, genome-wide screening (GWS), and spot testing, yielding 18 High Sensitive (HS), 43 Moderate Sensitive (MS), 17 Low Sensitive (LS), 20 High Resistant (HR), 23 Moderate Resistant (MR), and 9 Low Resistant (LR) strains. Complementation of sensitive mutants (e.g., ∆dksA, ∆seqA, ∆aaeA, ∆vacJ) with wild-type alleles via plasmids restored growth and elevated minimum inhibitory concentrations (MICs), directly linking these genes to tCA sensitivity. Functional evaluation (EcoCyc, DAVID, STRING) revealed HS gene hits were associated with transcriptional regulation, metabolic activity, protein folding, DNA repair, transport, and membrane stability. Resistant gene hits were linked to stress response and detoxification pathways. This systems-level analysis elucidates the genetic basis of E. coli's response to tCA, identifying targets for antimicrobial strategies leveraging tCA or its derivatives.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.