{"title":"Mechanism of PISD/SPG7-mediated mPTP opening in necroptosis of inflammatory HaCaT cells induced by nano-zinc oxide.","authors":"Menglei Wang, Qianwen Yang, Wantong Xiao, Yawen Luo, Jiawen Chen, Ziyi Tang, Yu Wei, Haiqing Li, Wanchun You, Yue Zheng, Li Li","doi":"10.1016/j.tox.2025.154258","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide nanoparticles (ZNPs) are extensively used in cosmetics and topical medications and are considered safe for normal skin. However, patients with inflammatory dermatoses, who have an impaired skin barrier, may be at increased risk of percutaneous exposure to ZNPs. Limited research currently exists on the percutaneous toxicity of ZNPs in such conditions. Therefore, this study aimed to evaluate the safety of ZNPs in inflammatory dermatoses. ZNP treatment increased inflammatory human immortalised keratinocyte (HaCaT) cell death and significantly elevated phosphorylated mixed lineage kinase domain-like protein (p-MLKL) protein expression in a concentration-dependent manner, showing that ZNPs trigger necroptosis in HaCaT cells. Further exploration revealed that ZNPs induced mitochondrial swelling and rupture and abnormal opening of the mitochondrial permeability transition pore (mPTP) in inflammatory HaCaT cells as well as decreased the expression of spastic paraplegia 7 (SPG7), a critical protein of the mPTP. Furthermore, phosphatidylserine decarboxylase (PISD) expression in the inner mitochondrial membrane (IMM) was significantly reduced. SPG7 overexpression reversed mPTP opening and necroptosis, whereas PISD overexpression directly upregulated SPG7 expression, inhibited mPTP opening, and reversed necroptosis. Our results indicate that ZNPs contribute to mPTP opening and mitochondrial swelling and rupture via the PISD/SPG7 pathway, an important mechanism leading to necroptosis in inflammatory HaCaT cells. Overall, this study highlights the potential hazards of ZNP exposure in patients with inflammatory dermatoses, reveals the mechanism of injury by which ZNPs induce skin toxicity, and provides data for future dermatotoxicological studies on ZNPs.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154258"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2025.154258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc oxide nanoparticles (ZNPs) are extensively used in cosmetics and topical medications and are considered safe for normal skin. However, patients with inflammatory dermatoses, who have an impaired skin barrier, may be at increased risk of percutaneous exposure to ZNPs. Limited research currently exists on the percutaneous toxicity of ZNPs in such conditions. Therefore, this study aimed to evaluate the safety of ZNPs in inflammatory dermatoses. ZNP treatment increased inflammatory human immortalised keratinocyte (HaCaT) cell death and significantly elevated phosphorylated mixed lineage kinase domain-like protein (p-MLKL) protein expression in a concentration-dependent manner, showing that ZNPs trigger necroptosis in HaCaT cells. Further exploration revealed that ZNPs induced mitochondrial swelling and rupture and abnormal opening of the mitochondrial permeability transition pore (mPTP) in inflammatory HaCaT cells as well as decreased the expression of spastic paraplegia 7 (SPG7), a critical protein of the mPTP. Furthermore, phosphatidylserine decarboxylase (PISD) expression in the inner mitochondrial membrane (IMM) was significantly reduced. SPG7 overexpression reversed mPTP opening and necroptosis, whereas PISD overexpression directly upregulated SPG7 expression, inhibited mPTP opening, and reversed necroptosis. Our results indicate that ZNPs contribute to mPTP opening and mitochondrial swelling and rupture via the PISD/SPG7 pathway, an important mechanism leading to necroptosis in inflammatory HaCaT cells. Overall, this study highlights the potential hazards of ZNP exposure in patients with inflammatory dermatoses, reveals the mechanism of injury by which ZNPs induce skin toxicity, and provides data for future dermatotoxicological studies on ZNPs.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.