Baseline high-resolution maps of soil nutrients in Morocco to support sustainable agriculture.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yassine Bouslihim, Abdelkrim Bouasria, Ahmed Jelloul, Lotfi Khiari, Sara Dahhani, Rachid Mrabet, Rachid Moussadek
{"title":"Baseline high-resolution maps of soil nutrients in Morocco to support sustainable agriculture.","authors":"Yassine Bouslihim, Abdelkrim Bouasria, Ahmed Jelloul, Lotfi Khiari, Sara Dahhani, Rachid Mrabet, Rachid Moussadek","doi":"10.1038/s41597-025-05699-x","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) and potassium (K) are essential fertilizer elements whose recommendations require soil analysis tailored to crop-specific needs. However, in developing countries like Morocco, access to open databases on nutrient bioavailability remains limited, hindering data-driven agricultural strategies. This paper presents the first national reference maps of available P and exchangeable K at 250 m resolution over Morocco's croplands using digital soil mapping with machine learning algorithms and environmental covariates. Unlike previous efforts employing traditional interpolation methods, these maps were developed using Random Forest by integrating 5,276 soil samples for P and 6,978 for K with 76 environmental covariates representing climate, topography, vegetation, and parent material. Model validation using independent test datasets demonstrated strong performance, with R<sup>2</sup> values of 0.78 for P and 0.80 for K. Uncertainty assessment through bootstrapping confirmed prediction stability across diverse agricultural landscapes. These baseline maps enhance fertilizer recommendations, promote precision farming, and support agricultural sustainability. The maps are freely available through open-access repository, enabling evidence-based decision-making for researchers, practitioners, and policymakers to improve nutrient management efficiency.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1389"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05699-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) and potassium (K) are essential fertilizer elements whose recommendations require soil analysis tailored to crop-specific needs. However, in developing countries like Morocco, access to open databases on nutrient bioavailability remains limited, hindering data-driven agricultural strategies. This paper presents the first national reference maps of available P and exchangeable K at 250 m resolution over Morocco's croplands using digital soil mapping with machine learning algorithms and environmental covariates. Unlike previous efforts employing traditional interpolation methods, these maps were developed using Random Forest by integrating 5,276 soil samples for P and 6,978 for K with 76 environmental covariates representing climate, topography, vegetation, and parent material. Model validation using independent test datasets demonstrated strong performance, with R2 values of 0.78 for P and 0.80 for K. Uncertainty assessment through bootstrapping confirmed prediction stability across diverse agricultural landscapes. These baseline maps enhance fertilizer recommendations, promote precision farming, and support agricultural sustainability. The maps are freely available through open-access repository, enabling evidence-based decision-making for researchers, practitioners, and policymakers to improve nutrient management efficiency.

摩洛哥土壤养分基线高分辨率地图,支持可持续农业。
磷(P)和钾(K)是必需的肥料元素,它们的建议需要根据作物的具体需求进行土壤分析。然而,在像摩洛哥这样的发展中国家,获取关于养分生物利用度的开放数据库仍然有限,阻碍了数据驱动的农业战略。本文采用带有机器学习算法和环境协变量的数字土壤制图方法,首次绘制了摩洛哥农田250米分辨率的可用磷和可交换钾的国家参考地图。与以往使用传统插值方法不同,这些地图是利用随机森林(Random Forest)将5276个土壤样本的P和6978个土壤样本的K与代表气候、地形、植被和母质的76个环境协变量整合在一起绘制的。使用独立测试数据集的模型验证显示了较强的性能,P的R2值为0.78,k的R2值为0.80。通过自助进行的不确定性评估证实了预测在不同农业景观中的稳定性。这些基线图加强了肥料建议,促进了精准农业,并支持农业的可持续性。这些地图可通过开放获取存储库免费获得,使研究人员、从业人员和政策制定者能够基于证据做出决策,从而提高养分管理效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信