Binqiong Chen, Huohu Zhong, Jiaojiao Lin, Guorong Lyu, Shanshan Su
{"title":"Ultrasound-Based Machine Learning and SHapley Additive exPlanations Method Evaluating Risk of Gallbladder Cancer: A Bicentric and Validation Study.","authors":"Binqiong Chen, Huohu Zhong, Jiaojiao Lin, Guorong Lyu, Shanshan Su","doi":"10.1002/jum.70027","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to construct and evaluate 8 machine learning models by integrating ultrasound imaging features, clinical characteristics, and serological features to assess the risk of gallbladder cancer (GBC) occurrence in patients.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on ultrasound and clinical data of 300 suspected GBC patients who visited the Second Affiliated Hospital of Fujian Medical University from January 2020 to January 2024 and 69 patients who visited the Zhongshan Hospital Affiliated to Xiamen University from January 2024 to January 2025. Key relevant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using XGBoost, logistic regression, support vector machine, k-nearest neighbors, random forest, decision tree, naive Bayes, and neural network, with the SHapley Additive exPlanations (SHAP) method employed to explain model interpretability.</p><p><strong>Results: </strong>The LASSO regression demonstrated that gender, age, alkaline phosphatase (ALP), clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions were key features for GBC. The XGBoost model demonstrated an area under receiver operating characteristic curve (AUC) of 0.934, 0.916, and 0.813 in the training, validating, and test sets. SHAP analysis revealed the importance ranking of factors as clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions, ALP, gender, and age. Personalized prediction explanations through SHAP values demonstrated the contribution of each feature to the final prediction, enhancing result interpretability. Furthermore, decision plots were generated to display the influence trajectory of each feature on model predictions, aiding in analyzing which features had the greatest impact on these mispredictions; thereby facilitating further model optimization or feature adjustment.</p><p><strong>Conclusion: </strong>This study proposed a GBC ML model based on ultrasound, clinical, and serological characteristics, indicating the superior performance of the XGBoost model and enhancing the interpretability of the model through the SHAP method.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.70027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aims to construct and evaluate 8 machine learning models by integrating ultrasound imaging features, clinical characteristics, and serological features to assess the risk of gallbladder cancer (GBC) occurrence in patients.
Methods: A retrospective analysis was conducted on ultrasound and clinical data of 300 suspected GBC patients who visited the Second Affiliated Hospital of Fujian Medical University from January 2020 to January 2024 and 69 patients who visited the Zhongshan Hospital Affiliated to Xiamen University from January 2024 to January 2025. Key relevant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using XGBoost, logistic regression, support vector machine, k-nearest neighbors, random forest, decision tree, naive Bayes, and neural network, with the SHapley Additive exPlanations (SHAP) method employed to explain model interpretability.
Results: The LASSO regression demonstrated that gender, age, alkaline phosphatase (ALP), clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions were key features for GBC. The XGBoost model demonstrated an area under receiver operating characteristic curve (AUC) of 0.934, 0.916, and 0.813 in the training, validating, and test sets. SHAP analysis revealed the importance ranking of factors as clarity of interface with liver, stratification of the gallbladder wall, intracapsular anechoic lesions, and intracapsular punctiform strong lesions, ALP, gender, and age. Personalized prediction explanations through SHAP values demonstrated the contribution of each feature to the final prediction, enhancing result interpretability. Furthermore, decision plots were generated to display the influence trajectory of each feature on model predictions, aiding in analyzing which features had the greatest impact on these mispredictions; thereby facilitating further model optimization or feature adjustment.
Conclusion: This study proposed a GBC ML model based on ultrasound, clinical, and serological characteristics, indicating the superior performance of the XGBoost model and enhancing the interpretability of the model through the SHAP method.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound