Electron currents mediated by tonoplast cytochromes b561.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Edoardo Tosato, Elisabetta Di Franco, Sayyeda Hira Hassan, Antonella Gradogna, Laura Lagostena, Cristiana Picco, Francesca Sparla, Paolo Trost, Armando Carpaneto
{"title":"Electron currents mediated by tonoplast cytochromes b561.","authors":"Edoardo Tosato, Elisabetta Di Franco, Sayyeda Hira Hassan, Antonella Gradogna, Laura Lagostena, Cristiana Picco, Francesca Sparla, Paolo Trost, Armando Carpaneto","doi":"10.1007/s00249-025-01785-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ascorbate (ASC) is a key redox buffer in plant cells, whose antioxidant capacity depends on its balance with monodehydroascorbate (MDHA), its one-electron oxidation product. In the cytoplasm of Arabidopsis mesophyll cells, ASC is present at high concentrations and interacts with enzymes that oxidize it to MDHA, such as ascorbate peroxidases, as well as with enzymes that regenerate it, like NAD(P)H-dependent MDHA oxidoreductases (MDHAR) and glutathione-dependent dehydroascorbate reductases (DHAR). In vacuoles, ASC is found at lower concentrations and vacuoles lack these enzymes, but it can still undergo non-enzymatic oxidation by phenoxy radicals generated by class III peroxidases. It has been discovered that vacuoles isolated from Arabidopsis mesophyll cells contain an electron transport system that functionally connects the cytoplasmic and vacuolar ASC pools, acting as a transmembrane MDHA oxidoreductase dependent on Asc. Patch-clamp measurements have shown that electron currents across the tonoplast depend on the presence of ASC as an electron donor and MDHA or ferricyanide as electron acceptors on opposite sides of the membrane. These electron currents are catalyzed by cytochrome b561 isoform A (CYB561A), a tonoplast redox protein with ASC-binding sites in both the cytoplasm and the vacuole, electrically connected by two heme b groups. The recent functional characterization of other members of the cytochrome b561 family underscores how these proteins are essential for cellular redox balance and metabolism, facilitating electron transport across membranes and supporting processes such as iron homeostasis, stress defence, and cell wall modifications, highlighting their fundamental role in plant physiology.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01785-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ascorbate (ASC) is a key redox buffer in plant cells, whose antioxidant capacity depends on its balance with monodehydroascorbate (MDHA), its one-electron oxidation product. In the cytoplasm of Arabidopsis mesophyll cells, ASC is present at high concentrations and interacts with enzymes that oxidize it to MDHA, such as ascorbate peroxidases, as well as with enzymes that regenerate it, like NAD(P)H-dependent MDHA oxidoreductases (MDHAR) and glutathione-dependent dehydroascorbate reductases (DHAR). In vacuoles, ASC is found at lower concentrations and vacuoles lack these enzymes, but it can still undergo non-enzymatic oxidation by phenoxy radicals generated by class III peroxidases. It has been discovered that vacuoles isolated from Arabidopsis mesophyll cells contain an electron transport system that functionally connects the cytoplasmic and vacuolar ASC pools, acting as a transmembrane MDHA oxidoreductase dependent on Asc. Patch-clamp measurements have shown that electron currents across the tonoplast depend on the presence of ASC as an electron donor and MDHA or ferricyanide as electron acceptors on opposite sides of the membrane. These electron currents are catalyzed by cytochrome b561 isoform A (CYB561A), a tonoplast redox protein with ASC-binding sites in both the cytoplasm and the vacuole, electrically connected by two heme b groups. The recent functional characterization of other members of the cytochrome b561 family underscores how these proteins are essential for cellular redox balance and metabolism, facilitating electron transport across membranes and supporting processes such as iron homeostasis, stress defence, and cell wall modifications, highlighting their fundamental role in plant physiology.

细胞质细胞色素b561介导的电子电流。
抗坏血酸(ASC)是植物细胞中重要的氧化还原缓冲剂,其抗氧化能力取决于其与单电子氧化产物单脱氢抗坏血酸(MDHA)的平衡。在拟南芥叶肉细胞的细胞质中,ASC以高浓度存在,并与将其氧化为MDHA的酶(如抗坏血酸过氧化物酶)以及再生它的酶(如NAD(P) h依赖的MDHA氧化还原酶(MDHAR)和谷胱甘肽依赖的脱氢抗坏血酸还原酶(DHAR))相互作用。在液泡中,ASC的浓度较低,液泡中缺乏这些酶,但它仍然可以被III类过氧化物酶产生的苯氧自由基非酶氧化。研究发现,从拟南芥叶肉细胞分离的液泡中含有一个电子传递系统,该系统在功能上连接细胞质和液泡ASC池,作为依赖ASC的跨膜MDHA氧化还原酶。膜片钳测量表明,通过细胞膜的电子电流取决于ASC作为电子供体和MDHA或铁氰化物作为电子受体在膜两侧的存在。这些电流由细胞色素b561异构体A (CYB561A)催化,CYB561A是一种细胞质氧化还原蛋白,在细胞质和液泡中都有asc结合位点,由两个血红素b基团电连接。最近对细胞色素b561家族其他成员的功能表征强调了这些蛋白在细胞氧化还原平衡和代谢、促进电子跨膜传递和支持铁稳态、逆境防御和细胞壁修饰等过程中是必不可少的,强调了它们在植物生理学中的基本作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信