Synergistic mechanisms in Fenton-like reactions: Coal gasification fine slag-loaded Fe-Al LDH catalysts for phenolic wastewater degradation.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Environmental Research Pub Date : 2025-11-15 Epub Date: 2025-08-06 DOI:10.1016/j.envres.2025.122514
Hongyang Mao, Shulei Li, Lihui Gao, Si Shen, Yanhong Liu, Keyi Xu
{"title":"Synergistic mechanisms in Fenton-like reactions: Coal gasification fine slag-loaded Fe-Al LDH catalysts for phenolic wastewater degradation.","authors":"Hongyang Mao, Shulei Li, Lihui Gao, Si Shen, Yanhong Liu, Keyi Xu","doi":"10.1016/j.envres.2025.122514","DOIUrl":null,"url":null,"abstract":"<p><p>Coal gasification fine slag (CGFS), a typical coal-based solid waste, poses significant environmental challenges with an annual output exceeding 50 million tons in China. The complex distribution of carbon and ash components necessitates the development of a material that can effectively harness both carbon and ash for comprehensive utilization. While layered double hydroxides (LDHs) exhibit catalytic potential, their performance is often limited by severe particle aggregation. Herein, we engineered a robust carbon-anchored Fe-Al-LDH composite (CGFS-LDH) through hydrothermal co-precipitation, demonstrating exceptional efficacy in H<sub>2</sub>O<sub>2</sub> activation for phenol degradation. Remarkably, CGFS-LDH achieved 100 % removal of 200 mg L<sup>-1</sup> phenol within 60 min. Advanced characterization (XPS, XRD, EPR, LC-MS, and electrochemical analysis) revealed that CGFS serves dual roles: as a structural scaffold preventing LDH aggregation and as an electron shuttle promoting Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycling. Although trace amounts of Fe (0.2 wt%) and Al (0.3 wt%) leached due to dynamic precipitation-dissolution equilibrium, the catalyst maintained outstanding stability over multiple cycles, with negligible activity loss. This work introduces an effective strategy for the comprehensive utilization and high-value transformation of CGFS, while also providing novel insights into the development of highly efficient and stable porous nanocomposites catalysts.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"122514"},"PeriodicalIF":7.7000,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.122514","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Coal gasification fine slag (CGFS), a typical coal-based solid waste, poses significant environmental challenges with an annual output exceeding 50 million tons in China. The complex distribution of carbon and ash components necessitates the development of a material that can effectively harness both carbon and ash for comprehensive utilization. While layered double hydroxides (LDHs) exhibit catalytic potential, their performance is often limited by severe particle aggregation. Herein, we engineered a robust carbon-anchored Fe-Al-LDH composite (CGFS-LDH) through hydrothermal co-precipitation, demonstrating exceptional efficacy in H2O2 activation for phenol degradation. Remarkably, CGFS-LDH achieved 100 % removal of 200 mg L-1 phenol within 60 min. Advanced characterization (XPS, XRD, EPR, LC-MS, and electrochemical analysis) revealed that CGFS serves dual roles: as a structural scaffold preventing LDH aggregation and as an electron shuttle promoting Fe2+/Fe3+ redox cycling. Although trace amounts of Fe (0.2 wt%) and Al (0.3 wt%) leached due to dynamic precipitation-dissolution equilibrium, the catalyst maintained outstanding stability over multiple cycles, with negligible activity loss. This work introduces an effective strategy for the comprehensive utilization and high-value transformation of CGFS, while also providing novel insights into the development of highly efficient and stable porous nanocomposites catalysts.

类fenton反应的协同机理:煤气化细渣负载Fe-Al LDH催化剂降解含酚废水。
煤气化细渣(CGFS)是一种典型的煤基固体废物,其年产量超过5000万吨,给中国带来了重大的环境挑战。碳和灰分组分的复杂分布要求开发一种能有效利用碳和灰分的材料进行综合利用。虽然层状双氢氧化物(LDHs)具有催化潜力,但它们的性能往往受到严重颗粒聚集的限制。在此,我们通过水热共沉淀法设计了一种坚固的碳锚定Fe-Al-LDH复合材料(CGFS-LDH),显示出H2O2活化降解苯酚的卓越功效。CGFS-LDH在60分钟内对200 mg·L-1苯酚的去除率达到100%。高级表征(XPS, XRD, EPR, LC-MS和电化学分析)表明,CGFS具有双重作用:作为防止LDH聚集的结构支架和促进Fe2+/Fe3+氧化还原循环的电子穿梭子。虽然由于动态沉淀-溶解平衡,痕量的铁(0.2 wt%)和铝(0.3 wt%)浸出,但催化剂在多次循环中保持了出色的稳定性,活性损失可以忽略不计。本研究为CGFS的综合利用和高价值转化提供了有效的策略,同时也为开发高效稳定的多孔纳米复合材料催化剂提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信