{"title":"Effect of nitrate anions on sulfate balance and hydration kinetics in C3S/C3A systems","authors":"Lei Lu, Xiao Liu, Jian Wang, Simai Wang, Yuhan Yao, Yurui Xu, Minghui Jiang, Yanzhen Xiao, Yanxi Li, Ziming Wang, Suping Cui","doi":"10.1016/j.cemconres.2025.108008","DOIUrl":null,"url":null,"abstract":"Elucidating the impact of nitrate anions on sulfate balance mechanism of cement is essential for optimizing the hydration performance of cementitious systems. This knowledge provides fundamental insights into regulating cementitious systems under varying service conditions. This study investigated how varying SO₃ content and nitrate anions affect sulfate balance in C<sub>3</sub>S/C<sub>3</sub>A pastes and the impact of these alterations on the hydration process. The influence of nitrate anions from Mg(NO₃)₂ on sulfate balance was determined by calorimetry, ICP-OES, TG, XRD and SEM. It was found that nitrate anions counteract Mg<sup>2+</sup> inhibition of C<sub>3</sub>S and C<sub>3</sub>A hydration by enhancing mineral dissolution, liberating Ca<sup>2+</sup> into pore solutions to accelerate hydration. Accelerating the formation process of ettringite (AFt) increased demand for sulfate. This Ca<sup>2+</sup> enrichment promotes portlandite supersaturation, which shortens the hydration induction period and accelerates C-S-H growth. The sulfate content significantly influences C-S-H growth kinetics at fixed nitrate concentrations.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"290 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2025.108008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the impact of nitrate anions on sulfate balance mechanism of cement is essential for optimizing the hydration performance of cementitious systems. This knowledge provides fundamental insights into regulating cementitious systems under varying service conditions. This study investigated how varying SO₃ content and nitrate anions affect sulfate balance in C3S/C3A pastes and the impact of these alterations on the hydration process. The influence of nitrate anions from Mg(NO₃)₂ on sulfate balance was determined by calorimetry, ICP-OES, TG, XRD and SEM. It was found that nitrate anions counteract Mg2+ inhibition of C3S and C3A hydration by enhancing mineral dissolution, liberating Ca2+ into pore solutions to accelerate hydration. Accelerating the formation process of ettringite (AFt) increased demand for sulfate. This Ca2+ enrichment promotes portlandite supersaturation, which shortens the hydration induction period and accelerates C-S-H growth. The sulfate content significantly influences C-S-H growth kinetics at fixed nitrate concentrations.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.