Molecularly resolved mapping of heterogeneous ice nucleation and crystallization pathways using in-situ cryo-TEM

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zibing Wang, Zifeng Yuan, Mouyang Cheng, Xudan Huang, Keyang Liu, Yihan Wang, Huacong Sun, Lei Liao, Zhi Xu, Ji Chen, Wenlong Wang, Lei Liu, Xuedong Bai, Limei Xu, Enge Wang, Lifen Wang
{"title":"Molecularly resolved mapping of heterogeneous ice nucleation and crystallization pathways using in-situ cryo-TEM","authors":"Zibing Wang, Zifeng Yuan, Mouyang Cheng, Xudan Huang, Keyang Liu, Yihan Wang, Huacong Sun, Lei Liao, Zhi Xu, Ji Chen, Wenlong Wang, Lei Liu, Xuedong Bai, Limei Xu, Enge Wang, Lifen Wang","doi":"10.1038/s41467-025-62900-w","DOIUrl":null,"url":null,"abstract":"<p>Crystallization plays a fundamental role in diverse fields such as glaciology, geology, biology, and materials science. Among various crystallizing systems, the formation of ice remains elusive, despite decades of intensive investigation. In this study, we integrate in-situ cryogenic transmission electron microscopy with molecular dynamics simulations to develop a molecular-resolution mapping and thermodynamic framework for deposition freezing under low-temperature, low-pressure conditions. Our results demonstrate that ice formation on rapidly cooled substrates, representing far-from-equilibrium states, proceeds via an adsorption-mediated, barrierless pathway of heterogeneous ice nucleation, followed by progression toward thermodynamic equilibrium. This process is unveiled to involve a series of distinct yet interconnected steps, including amorphous ice adsorption, spontaneous nucleation and growth of ice I, Ostwald ripening, Wulff construction, oriented coalescence, and aggregation, all governed by interfacial free energy minima. Our findings offer direct molecular-level insight into the mechanisms of heterogeneous ice nucleation, enrich current understanding of non-classical nucleation pathways, and emphasize the critical role of interfacial energetics in shaping ice crystal morphology and quality.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"739 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62900-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Crystallization plays a fundamental role in diverse fields such as glaciology, geology, biology, and materials science. Among various crystallizing systems, the formation of ice remains elusive, despite decades of intensive investigation. In this study, we integrate in-situ cryogenic transmission electron microscopy with molecular dynamics simulations to develop a molecular-resolution mapping and thermodynamic framework for deposition freezing under low-temperature, low-pressure conditions. Our results demonstrate that ice formation on rapidly cooled substrates, representing far-from-equilibrium states, proceeds via an adsorption-mediated, barrierless pathway of heterogeneous ice nucleation, followed by progression toward thermodynamic equilibrium. This process is unveiled to involve a series of distinct yet interconnected steps, including amorphous ice adsorption, spontaneous nucleation and growth of ice I, Ostwald ripening, Wulff construction, oriented coalescence, and aggregation, all governed by interfacial free energy minima. Our findings offer direct molecular-level insight into the mechanisms of heterogeneous ice nucleation, enrich current understanding of non-classical nucleation pathways, and emphasize the critical role of interfacial energetics in shaping ice crystal morphology and quality.

Abstract Image

利用原位冷冻透射电镜进行非均相冰核和结晶途径的分子分辨作图
结晶在冰川学、地质学、生物学和材料科学等多个领域发挥着重要作用。在各种结晶系统中,尽管经过几十年的深入研究,冰的形成仍然是难以捉摸的。在这项研究中,我们将原位低温透射电子显微镜与分子动力学模拟相结合,开发了低温、低压条件下沉积冻结的分子分辨率制图和热力学框架。我们的研究结果表明,快速冷却的基底上的冰形成,代表着远离平衡状态,通过吸附介导的非均质冰成核的无障碍途径进行,然后向热力学平衡方向发展。该过程涉及一系列不同但相互关联的步骤,包括无定形冰吸附,冰I的自发成核和生长,Ostwald成熟,Wulff结构,定向聚结和聚集,所有这些都受界面自由能最小值的控制。我们的研究结果为非均相冰成核机制提供了直接的分子水平见解,丰富了目前对非经典成核途径的理解,并强调了界面能量学在形成冰晶形态和质量中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信