Zibing Wang, Zifeng Yuan, Mouyang Cheng, Xudan Huang, Keyang Liu, Yihan Wang, Huacong Sun, Lei Liao, Zhi Xu, Ji Chen, Wenlong Wang, Lei Liu, Xuedong Bai, Limei Xu, Enge Wang, Lifen Wang
{"title":"Molecularly resolved mapping of heterogeneous ice nucleation and crystallization pathways using in-situ cryo-TEM","authors":"Zibing Wang, Zifeng Yuan, Mouyang Cheng, Xudan Huang, Keyang Liu, Yihan Wang, Huacong Sun, Lei Liao, Zhi Xu, Ji Chen, Wenlong Wang, Lei Liu, Xuedong Bai, Limei Xu, Enge Wang, Lifen Wang","doi":"10.1038/s41467-025-62900-w","DOIUrl":null,"url":null,"abstract":"<p>Crystallization plays a fundamental role in diverse fields such as glaciology, geology, biology, and materials science. Among various crystallizing systems, the formation of ice remains elusive, despite decades of intensive investigation. In this study, we integrate in-situ cryogenic transmission electron microscopy with molecular dynamics simulations to develop a molecular-resolution mapping and thermodynamic framework for deposition freezing under low-temperature, low-pressure conditions. Our results demonstrate that ice formation on rapidly cooled substrates, representing far-from-equilibrium states, proceeds via an adsorption-mediated, barrierless pathway of heterogeneous ice nucleation, followed by progression toward thermodynamic equilibrium. This process is unveiled to involve a series of distinct yet interconnected steps, including amorphous ice adsorption, spontaneous nucleation and growth of ice I, Ostwald ripening, Wulff construction, oriented coalescence, and aggregation, all governed by interfacial free energy minima. Our findings offer direct molecular-level insight into the mechanisms of heterogeneous ice nucleation, enrich current understanding of non-classical nucleation pathways, and emphasize the critical role of interfacial energetics in shaping ice crystal morphology and quality.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"739 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62900-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crystallization plays a fundamental role in diverse fields such as glaciology, geology, biology, and materials science. Among various crystallizing systems, the formation of ice remains elusive, despite decades of intensive investigation. In this study, we integrate in-situ cryogenic transmission electron microscopy with molecular dynamics simulations to develop a molecular-resolution mapping and thermodynamic framework for deposition freezing under low-temperature, low-pressure conditions. Our results demonstrate that ice formation on rapidly cooled substrates, representing far-from-equilibrium states, proceeds via an adsorption-mediated, barrierless pathway of heterogeneous ice nucleation, followed by progression toward thermodynamic equilibrium. This process is unveiled to involve a series of distinct yet interconnected steps, including amorphous ice adsorption, spontaneous nucleation and growth of ice I, Ostwald ripening, Wulff construction, oriented coalescence, and aggregation, all governed by interfacial free energy minima. Our findings offer direct molecular-level insight into the mechanisms of heterogeneous ice nucleation, enrich current understanding of non-classical nucleation pathways, and emphasize the critical role of interfacial energetics in shaping ice crystal morphology and quality.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.