{"title":"SeCoV2: Semantic Connectivity-driven Pseudo-Labeling for Robust Cross-Domain Semantic Segmentation.","authors":"Dong Zhao,Qi Zang,Nan Pu,Shuang Wang,Nicu Sebe,Zhun Zhong","doi":"10.1109/tpami.2025.3596943","DOIUrl":null,"url":null,"abstract":"Pseudo-labeling is a dominant strategy for cross-domain semantic segmentation (CDSS), yet its effectiveness is limited by fragmented and noisy pixel-level predictions under severe domain shifts. To address this, we propose a semantic connectivity-driven pseudo-labeling framework, SeCo, which constructs and refines pseudo-labels at the connectivity level by aggregating high-confidence pixels into coherent semantic regions. The framework includes two key components: Pixel Semantic Aggregation (PSA), which leverages a dual prompting strategy to preserve category-specific granularity, and Semantic Connectivity Correction with Loss Distribution (SCC-LD), which filters noisy regions based on early-loss statistics. Building upon this foundation, we further present SeCoV2, which introduces SCC-Unc, a novel uncertainty-aware correction module that constructs a connectivity graph and enforces relational consistency for robust refinement in ambiguous regions. SeCoV2 also broadens the applicability of SeCo by extending evaluation to more challenging scenarios, including open-set and multimodal adaptation, semi-supervised domain generalization, and by validating compatibility with different interactive foundation segmentation models such as SAM [1], SEEM [2], and Fast-SAM [3]. Extensive experiments across six CDSS tasks demonstrate that SeCoV2 achieves consistent improvements over previous methods, with an average performance gain of up to +4.6%, establishing new state-of-the-art results. These findings highlight the effectiveness and generalization ability for robust adaptation in diverse real-world environments.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"711 1","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3596943","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudo-labeling is a dominant strategy for cross-domain semantic segmentation (CDSS), yet its effectiveness is limited by fragmented and noisy pixel-level predictions under severe domain shifts. To address this, we propose a semantic connectivity-driven pseudo-labeling framework, SeCo, which constructs and refines pseudo-labels at the connectivity level by aggregating high-confidence pixels into coherent semantic regions. The framework includes two key components: Pixel Semantic Aggregation (PSA), which leverages a dual prompting strategy to preserve category-specific granularity, and Semantic Connectivity Correction with Loss Distribution (SCC-LD), which filters noisy regions based on early-loss statistics. Building upon this foundation, we further present SeCoV2, which introduces SCC-Unc, a novel uncertainty-aware correction module that constructs a connectivity graph and enforces relational consistency for robust refinement in ambiguous regions. SeCoV2 also broadens the applicability of SeCo by extending evaluation to more challenging scenarios, including open-set and multimodal adaptation, semi-supervised domain generalization, and by validating compatibility with different interactive foundation segmentation models such as SAM [1], SEEM [2], and Fast-SAM [3]. Extensive experiments across six CDSS tasks demonstrate that SeCoV2 achieves consistent improvements over previous methods, with an average performance gain of up to +4.6%, establishing new state-of-the-art results. These findings highlight the effectiveness and generalization ability for robust adaptation in diverse real-world environments.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.