Self-assembled and intestine-targeting florfenicol nano-micelles effectively inhibit drug-resistant Salmonella typhimurium, eradicate biofilm, and maintain intestinal homeostasis.

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-07-01 Epub Date: 2025-02-12 DOI:10.1016/j.jpha.2025.101226
Runan Zuo, Linran Fu, Wanjun Pang, Lingqing Kong, Liangyun Weng, Zeyuan Sun, Ruichao Li, Shaoqi Qu, Lin Li
{"title":"Self-assembled and intestine-targeting florfenicol nano-micelles effectively inhibit drug-resistant <i>Salmonella typhimurium,</i> eradicate biofilm, and maintain intestinal homeostasis.","authors":"Runan Zuo, Linran Fu, Wanjun Pang, Lingqing Kong, Liangyun Weng, Zeyuan Sun, Ruichao Li, Shaoqi Qu, Lin Li","doi":"10.1016/j.jpha.2025.101226","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Emerging multidrug resistant (MDR) <i>Salmonella typhimurium</i> has raised concern for its effect on pathogenic infection and mortality in humans caused by enteric diseases. To combat these MDR <i>Salmonella typhimurium</i> pathogens, highly effective and broad-spectrum antibiotics such as flufenicol (FFC) need to be evaluated for their potent antibacterial activity against <i>Salmonella typhimurium</i>. However, the low solubility and low oral bioavailability of flufenicol need to be addressed to better combat AMR. In this work, we develop a novel nano-formulation, flufenicol nano-micelles (FTPPM), which are based on d-α-tocopherol polyethylene glycol 1,000 succinate (TPGS)/poloxamer 188 (P188), for the targeted treatment of biofilms formed by drug-resistant <i>Salmonella typhimurium</i> in the intestine. Herein, FTPPM were prepared via a thin film hydration method. The preparation process for the mixed micelles is simple and convenient compared with other existing nanodrug delivery systems, which can further decrease production costs. The optimized FTPPM demonstrated outstanding stability and sustained release. An evaluation of the <i>in vivo</i> anti-drug-resistant <i>Salmonella typhimurium</i> efficacy demonstrated that FTPPM showed a stronger efficacy (68.17 %) than did florfenicol-loaded TPGS polymer micelles (FTPM), flufenicol active pharmaceutical ingredients (FFC-API), and flufenicol commercially available medicine (FFC-CAM), and also exhibited outstanding biocompatibility. Notably, FTPPM also inhibited drug-resistant <i>Salmonella typhimurium</i> from forming biofilms. More importantly, FTPPM effectively restored intestinal flora disorders induced by drug-resistant <i>Salmonella typhimurium</i> in mice. In summary, FTPPM significantly improved the solubility and oral bioavailability of florfenicol, enhancing its efficacy against drug-resistant <i>Salmonella typhimurium</i> both <i>in vitro</i> and <i>in vivo</i>. FTPPM represent a promising drug-resistant <i>Salmonella typhimurium</i> treatment for curbing bacterial resistance via oral administration.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 7","pages":"101226"},"PeriodicalIF":8.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Emerging multidrug resistant (MDR) Salmonella typhimurium has raised concern for its effect on pathogenic infection and mortality in humans caused by enteric diseases. To combat these MDR Salmonella typhimurium pathogens, highly effective and broad-spectrum antibiotics such as flufenicol (FFC) need to be evaluated for their potent antibacterial activity against Salmonella typhimurium. However, the low solubility and low oral bioavailability of flufenicol need to be addressed to better combat AMR. In this work, we develop a novel nano-formulation, flufenicol nano-micelles (FTPPM), which are based on d-α-tocopherol polyethylene glycol 1,000 succinate (TPGS)/poloxamer 188 (P188), for the targeted treatment of biofilms formed by drug-resistant Salmonella typhimurium in the intestine. Herein, FTPPM were prepared via a thin film hydration method. The preparation process for the mixed micelles is simple and convenient compared with other existing nanodrug delivery systems, which can further decrease production costs. The optimized FTPPM demonstrated outstanding stability and sustained release. An evaluation of the in vivo anti-drug-resistant Salmonella typhimurium efficacy demonstrated that FTPPM showed a stronger efficacy (68.17 %) than did florfenicol-loaded TPGS polymer micelles (FTPM), flufenicol active pharmaceutical ingredients (FFC-API), and flufenicol commercially available medicine (FFC-CAM), and also exhibited outstanding biocompatibility. Notably, FTPPM also inhibited drug-resistant Salmonella typhimurium from forming biofilms. More importantly, FTPPM effectively restored intestinal flora disorders induced by drug-resistant Salmonella typhimurium in mice. In summary, FTPPM significantly improved the solubility and oral bioavailability of florfenicol, enhancing its efficacy against drug-resistant Salmonella typhimurium both in vitro and in vivo. FTPPM represent a promising drug-resistant Salmonella typhimurium treatment for curbing bacterial resistance via oral administration.

自组装的靶向肠道的氟苯尼考纳米胶束有效抑制耐药鼠伤寒沙门菌,消除生物膜,维持肠道内稳态。
抗菌素耐药性是一个日益严重的公共卫生危机,需要创新的解决方案。新出现的多药耐药(MDR)鼠伤寒沙门菌对肠道疾病引起的人类致病性感染和死亡率的影响引起了人们的关注。为了对抗这些耐多药鼠伤寒沙门菌病原体,需要评估高效广谱抗生素,如氟苯尼考(FFC)对鼠伤寒沙门菌的有效抗菌活性。然而,氟苯尼考的低溶解度和低口服生物利用度需要解决,以更好地对抗抗菌素耐药性。在这项工作中,我们开发了一种新的纳米制剂,氟苯尼考纳米胶束(FTPPM),它是基于d-α-生育酚聚乙二醇1000琥珀酸酯(TPGS)/波洛沙姆188 (P188),用于靶向治疗肠道内耐药鼠鼠沙门氏菌形成的生物膜。本文采用薄膜水化法制备了FTPPM。与现有的其他纳米药物传递系统相比,混合胶束的制备工艺简单方便,可进一步降低生产成本。优化后的FTPPM具有优异的稳定性和缓释性能。对体内耐药鼠鼠沙门氏菌的疗效评价表明,FTPPM比负载氟苯尼考的TPGS聚合物胶束(FTPM)、氟苯尼考活性药物成分(FFC-API)和氟苯尼考市售药(FFC-CAM)具有更强的疗效(68.17%),并具有良好的生物相容性。值得注意的是,FTPPM还抑制耐药鼠伤寒沙门氏菌形成生物膜。更重要的是,FTPPM能有效恢复小鼠耐药鼠伤寒沙门氏菌引起的肠道菌群紊乱。综上所述,FTPPM显著提高了氟苯尼考的溶解度和口服生物利用度,增强了其体内外抗耐药鼠伤寒沙门菌的有效性。通过口服给药,FTPPM代表了一种有希望的耐药鼠伤寒沙门氏菌治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信