Margarita Saranti, Douglas Neville, Adam White, Pia Rotshtein, Thomas M H Hope, Cathy J Price, Howard Bowman
{"title":"Predicting language outcome after stroke using machine learning: in search of the big data benefit.","authors":"Margarita Saranti, Douglas Neville, Adam White, Pia Rotshtein, Thomas M H Hope, Cathy J Price, Howard Bowman","doi":"10.1016/j.nicl.2025.103858","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of post-stroke language outcomes using machine learning offers the potential to enhance clinical treatment and rehabilitation for aphasic patients. This study of 758 English speaking stroke patients from the PLORAS project explores the impact of sample size on the performance of logistic regression and a deep learning (ResNet-18) model in predicting language outcomes from neuroimaging and impairment-relevant tabular data. We assessed the performance of both models on two key language tasks from the Comprehensive Aphasia Test: Spoken Picture Description and Naming, using a learning curve approach. Contrary to expectations, the simpler logistic regression model performed comparably or better than the deep learning model (with overlapping confidence intervals), with both models showing an accuracy plateau around 80% for sample sizes larger than 300 patients. Principal Component Analysis revealed that the dimensionality of the neuroimaging data could be reduced to as few as 20 (or even 2) dominant components without significant loss in accuracy, suggesting that classification may be driven by simple patterns such as lesion size. The study highlights both the potential limitations of current dataset size in achieving further accuracy gains and the need for larger datasets to capture more complex patterns, as some of our results indicate that we might not have reached an absolute classification performance ceiling. Overall, these findings provide insights into the practical use of machine learning for predicting aphasia outcomes and the potential benefits of much larger datasets in enhancing model performance.</p>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"48 ","pages":"103858"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nicl.2025.103858","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of post-stroke language outcomes using machine learning offers the potential to enhance clinical treatment and rehabilitation for aphasic patients. This study of 758 English speaking stroke patients from the PLORAS project explores the impact of sample size on the performance of logistic regression and a deep learning (ResNet-18) model in predicting language outcomes from neuroimaging and impairment-relevant tabular data. We assessed the performance of both models on two key language tasks from the Comprehensive Aphasia Test: Spoken Picture Description and Naming, using a learning curve approach. Contrary to expectations, the simpler logistic regression model performed comparably or better than the deep learning model (with overlapping confidence intervals), with both models showing an accuracy plateau around 80% for sample sizes larger than 300 patients. Principal Component Analysis revealed that the dimensionality of the neuroimaging data could be reduced to as few as 20 (or even 2) dominant components without significant loss in accuracy, suggesting that classification may be driven by simple patterns such as lesion size. The study highlights both the potential limitations of current dataset size in achieving further accuracy gains and the need for larger datasets to capture more complex patterns, as some of our results indicate that we might not have reached an absolute classification performance ceiling. Overall, these findings provide insights into the practical use of machine learning for predicting aphasia outcomes and the potential benefits of much larger datasets in enhancing model performance.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.