Garazi Retegui, Alan E Gelfand, Jaione Etxeberria, María Dolores Ugarte
{"title":"On prior smoothing with discrete spatial data in the context of disease mapping.","authors":"Garazi Retegui, Alan E Gelfand, Jaione Etxeberria, María Dolores Ugarte","doi":"10.1177/09622802251362659","DOIUrl":null,"url":null,"abstract":"<p><p>Disease mapping attempts to explain observed health event counts across areal units, typically using Markov random field models. These models rely on spatial priors to account for variation in raw relative risk or rate estimates. Spatial priors introduce some degree of smoothing, wherein, for any particular unit, empirical risk or incidence estimates are either adjusted towards a suitable mean or incorporate neighbor-based smoothing. While model explanation may be the primary focus, the literature lacks a comparison of the amount of smoothing introduced by different spatial priors. Additionally, there has been no investigation into how varying the parameters of these priors influences the resulting smoothing. This study examines seven commonly used spatial priors through both simulations and real data analyses. Using areal maps of peninsular Spain and England, we analyze smoothing effects using two datasets with associated populations at risk. We propose empirical metrics to quantify the smoothing achieved by each model and theoretical metrics to calibrate the expected extent of smoothing as a function of model parameters. We employ areal maps in order to quantitatively characterize the extent of smoothing within and across the models as well as to link the theoretical metrics to the empirical metrics.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251362659"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251362659","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Disease mapping attempts to explain observed health event counts across areal units, typically using Markov random field models. These models rely on spatial priors to account for variation in raw relative risk or rate estimates. Spatial priors introduce some degree of smoothing, wherein, for any particular unit, empirical risk or incidence estimates are either adjusted towards a suitable mean or incorporate neighbor-based smoothing. While model explanation may be the primary focus, the literature lacks a comparison of the amount of smoothing introduced by different spatial priors. Additionally, there has been no investigation into how varying the parameters of these priors influences the resulting smoothing. This study examines seven commonly used spatial priors through both simulations and real data analyses. Using areal maps of peninsular Spain and England, we analyze smoothing effects using two datasets with associated populations at risk. We propose empirical metrics to quantify the smoothing achieved by each model and theoretical metrics to calibrate the expected extent of smoothing as a function of model parameters. We employ areal maps in order to quantitatively characterize the extent of smoothing within and across the models as well as to link the theoretical metrics to the empirical metrics.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)