Aluminum oxide nanoparticles induce neurodegeneration via oxidative stress, amyloidogenic pathway activation, and BDNF suppression in rat brain.

IF 2.5 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Tissue & cell Pub Date : 2025-12-01 Epub Date: 2025-08-05 DOI:10.1016/j.tice.2025.103070
Yasser S El-Sayed, Dalia H Samak, Hamida M Saleh, Marium B Aboshoom, Amira E Shehata, Shahenaz M Hassan
{"title":"Aluminum oxide nanoparticles induce neurodegeneration via oxidative stress, amyloidogenic pathway activation, and BDNF suppression in rat brain.","authors":"Yasser S El-Sayed, Dalia H Samak, Hamida M Saleh, Marium B Aboshoom, Amira E Shehata, Shahenaz M Hassan","doi":"10.1016/j.tice.2025.103070","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum oxide nanoparticles (Al₂O₃NPs) are used across industrial and consumer sectors, raising concerns about their potential neurotoxic effects. Despite growing application, the mechanisms underlying Al₂O₃NP-induced neurodegeneration remain poorly understood. This study investigated the mechanistic pathways of Al₂O₃NP neurotoxicity in adult male Sprague-Dawley rats exposed intraperitoneally to 15, 30, or 60 mg/kg Al₂O₃NPs for 60 days. Comprehensive analyses included hematological profiling, serum biochemistry, oxidative stress markers (MDA, Nrf2/Keap1), neurotransmitter assays (dopamine, acetylcholine, AChE), quantitative PCR of APP, BACE1, and BDNF, inductively coupled plasma spectroscopy for brain aluminum levels, histopathology, immunohistochemistry (caspase-3, BCL2), and ultrastructural examination by transmission electron microscopy. Al₂O₃NP exposure induced dose-dependent anemia, disrupted iron and calcium homeostasis, and triggered oxidative stress, evidenced by elevated MDA and suppressed Nrf2/Keap1 signaling. Neurochemical analyses revealed marked dopamine and acetylcholine depletion alongside diminished AChE activity. Molecular assays showed significant upregulation of amyloidogenic markers (APP, BACE1) and severe BDNF suppression, indicating impaired neurotrophic support. Brain histopathology revealed progressive neuronal shrinkage, Purkinje cell loss, astrogliosis, and perivascular edema, while immunohistochemistry demonstrated heightened caspase-3 activation and reduced BCL2 expression. TEM confirmed ultrastructural axonal degeneration, demyelination, and necrotic neuronal profiles. Notably, aluminum bioaccumulation increased 116-fold at the highest dose, tightly correlating with neurodegeneration severity. These findings demonstrate that subchronic Al₂O₃NP exposure promotes neurodegeneration via a multifaceted oxidative stress mechanism, activating the amyloidogenic pathway, synaptic dysfunction, neurotrophic impairment, and apoptosis. This work underscores the urgent need for rigorous safety assessments of nanoparticle exposure in biomedical and environmental settings.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"97 ","pages":"103070"},"PeriodicalIF":2.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.103070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum oxide nanoparticles (Al₂O₃NPs) are used across industrial and consumer sectors, raising concerns about their potential neurotoxic effects. Despite growing application, the mechanisms underlying Al₂O₃NP-induced neurodegeneration remain poorly understood. This study investigated the mechanistic pathways of Al₂O₃NP neurotoxicity in adult male Sprague-Dawley rats exposed intraperitoneally to 15, 30, or 60 mg/kg Al₂O₃NPs for 60 days. Comprehensive analyses included hematological profiling, serum biochemistry, oxidative stress markers (MDA, Nrf2/Keap1), neurotransmitter assays (dopamine, acetylcholine, AChE), quantitative PCR of APP, BACE1, and BDNF, inductively coupled plasma spectroscopy for brain aluminum levels, histopathology, immunohistochemistry (caspase-3, BCL2), and ultrastructural examination by transmission electron microscopy. Al₂O₃NP exposure induced dose-dependent anemia, disrupted iron and calcium homeostasis, and triggered oxidative stress, evidenced by elevated MDA and suppressed Nrf2/Keap1 signaling. Neurochemical analyses revealed marked dopamine and acetylcholine depletion alongside diminished AChE activity. Molecular assays showed significant upregulation of amyloidogenic markers (APP, BACE1) and severe BDNF suppression, indicating impaired neurotrophic support. Brain histopathology revealed progressive neuronal shrinkage, Purkinje cell loss, astrogliosis, and perivascular edema, while immunohistochemistry demonstrated heightened caspase-3 activation and reduced BCL2 expression. TEM confirmed ultrastructural axonal degeneration, demyelination, and necrotic neuronal profiles. Notably, aluminum bioaccumulation increased 116-fold at the highest dose, tightly correlating with neurodegeneration severity. These findings demonstrate that subchronic Al₂O₃NP exposure promotes neurodegeneration via a multifaceted oxidative stress mechanism, activating the amyloidogenic pathway, synaptic dysfunction, neurotrophic impairment, and apoptosis. This work underscores the urgent need for rigorous safety assessments of nanoparticle exposure in biomedical and environmental settings.

氧化铝纳米颗粒通过氧化应激、淀粉样蛋白通路激活和BDNF抑制诱导大鼠脑神经变性。
氧化铝纳米颗粒(Al₂O₃NPs)被用于工业和消费部门,引起了人们对其潜在神经毒性的担忧。尽管应用越来越多,但Al₂O₃np诱导的神经变性的机制仍然知之甚少。该研究研究了成年雄性Sprague-Dawley大鼠腹腔暴露于15、30或60 mg/kg Al₂O₃NPs 60天后,Al₂O₃NP神经毒性的机制途径。综合分析包括血清学分析、血清生化、氧化应激标志物(MDA、Nrf2/Keap1)、神经递质测定(多巴胺、乙酰胆碱、乙酰胆碱)、APP、BACE1和BDNF定量PCR、脑铝水平诱导耦合等离子体光谱、组织病理学、免疫组织化学(caspase-3、BCL2)和透射电镜超微结构检查。Al₂O₃NP暴露可引起剂量依赖性贫血,破坏铁钙平衡,引发氧化应激,其表现为MDA升高和Nrf2/Keap1信号抑制。神经化学分析显示,多巴胺和乙酰胆碱明显减少,乙酰胆碱活性降低。分子分析显示淀粉样变性标志物(APP、BACE1)显著上调,BDNF严重抑制,表明神经营养支持受损。脑组织病理学显示进行性神经元萎缩,浦肯野细胞丢失,星形胶质细胞增生和血管周围水肿,而免疫组织化学显示caspase-3激活升高,BCL2表达降低。透射电镜证实了超微结构轴突变性、脱髓鞘和神经元坏死。值得注意的是,在最高剂量下,铝的生物蓄积增加了116倍,与神经退行性疾病的严重程度密切相关。这些研究结果表明,亚慢性Al₂O₃NP暴露通过多方面的氧化应激机制促进神经变性,激活淀粉样蛋白生成途径,突触功能障碍,神经营养损伤和细胞凋亡。这项工作强调了迫切需要对生物医学和环境环境中纳米颗粒暴露进行严格的安全评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信