A causal model of human growth and its estimation using temporally sparse data.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-08-07 eCollection Date: 2025-08-01 DOI:10.1098/rsos.250084
John A Bunce, Catalina I Fernández, Caissa Revilla-Minaya
{"title":"A causal model of human growth and its estimation using temporally sparse data.","authors":"John A Bunce, Catalina I Fernández, Caissa Revilla-Minaya","doi":"10.1098/rsos.250084","DOIUrl":null,"url":null,"abstract":"<p><p>Existing models of human growth provide limited insight into underlying mechanisms responsible for inter-individual and inter-population variation in children's growth trajectories. Building on general theories linking growth to metabolic rates, we develop a causal parametric model of height and weight growth incorporating a representation of human body allometry and a process-partitioned representation of ontogeny. This model permits separation of metabolic causes of growth variation, potentially influenced by nutrition and disease, from allometric factors, potentially under stronger genetic control. We estimate model parameters using a Bayesian multilevel statistical design applied to temporally dense height and weight measurements of U.S. children, and temporally sparse measurements of Indigenous Amazonian children. This facilitates a comparison of the contributions of metabolism and allometry to observed cross-cultural variation in the growth trajectories of the two populations, and permits simulation of the effects of healthcare interventions on growth. This theoretical model provides a new framework for exploring the causes of growth variation in our species, while potentially guiding the development of appropriate, and desired, healthcare interventions in societies confronting growth-related health challenges, such as malnutrition and stunting.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"250084"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250084","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Existing models of human growth provide limited insight into underlying mechanisms responsible for inter-individual and inter-population variation in children's growth trajectories. Building on general theories linking growth to metabolic rates, we develop a causal parametric model of height and weight growth incorporating a representation of human body allometry and a process-partitioned representation of ontogeny. This model permits separation of metabolic causes of growth variation, potentially influenced by nutrition and disease, from allometric factors, potentially under stronger genetic control. We estimate model parameters using a Bayesian multilevel statistical design applied to temporally dense height and weight measurements of U.S. children, and temporally sparse measurements of Indigenous Amazonian children. This facilitates a comparison of the contributions of metabolism and allometry to observed cross-cultural variation in the growth trajectories of the two populations, and permits simulation of the effects of healthcare interventions on growth. This theoretical model provides a new framework for exploring the causes of growth variation in our species, while potentially guiding the development of appropriate, and desired, healthcare interventions in societies confronting growth-related health challenges, such as malnutrition and stunting.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

人类成长的因果模型及其使用时间稀疏数据的估计。
现有的人类生长模型对儿童生长轨迹中个体间和种群间差异的潜在机制提供的见解有限。在将生长与代谢率联系起来的一般理论的基础上,我们开发了一个身高和体重增长的因果参数模型,其中包括人体异速生长的表示和个体发育的过程分割表示。该模型允许分离生长变异的代谢原因(可能受营养和疾病的影响)和异速生长因素(可能受更强的遗传控制)。我们使用贝叶斯多水平统计设计来估计模型参数,该设计适用于美国儿童的时间密集身高和体重测量,以及亚马逊土著儿童的时间稀疏测量。这有助于比较代谢和异速生长对观察到的两个种群生长轨迹的跨文化差异的贡献,并允许模拟医疗保健干预对生长的影响。这一理论模型为探索人类物种生长变异的原因提供了一个新的框架,同时可能指导在面临与生长相关的健康挑战(如营养不良和发育迟缓)的社会中开发适当和理想的医疗保健干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信