Dineesha N Balagalla, Wikum H Jayasinghe, Hao Gefei, W M Wishwajith W Kandegama, Jihyun Kim, Hangil Kim
{"title":"Elevated Temperature Can Reduce Cucumber Mosaic Virus Transmission in Tobacco Plants by Altering the Insect Vector's Performance.","authors":"Dineesha N Balagalla, Wikum H Jayasinghe, Hao Gefei, W M Wishwajith W Kandegama, Jihyun Kim, Hangil Kim","doi":"10.5423/PPJ.OA.02.2025.0016","DOIUrl":null,"url":null,"abstract":"<p><p>Disease dynamics are significantly influenced by insect vectors through their interactions with viruses and host plants. The objective of this study is to understand how increased temperatures affect virus transmission, providing insights critical for developing climate-resilient pest and disease management strategies. We investigated the effects of temperature on the survival and growth of Myzus persicae (Sulzer) (Hemiptera: Aphididae), a key vector of the cucumber mosaic virus (CMV). Experiments were conducted to assess aphid survival, reproduction, and intrinsic rate of increase on healthy and CMV-infected Nicotiana tabacum plants at 25℃ and 30℃. It was observed that higher temperatures did not negatively affect aphid survival. CMV transmission assay was performed by allowing aphids to acquire and inoculate the virus under varied temperature combinations, while the aphid feeding behavior was monitored at different temperatures. The transmission efficiency was markedly reduced at 30℃ compared to 25℃, regardless of variations in temperature during virus acquisition and inoculation. Analysis of probing behavior revealed that aphids' probing behavior differed at 30℃, likely contributing to reduced transmission efficiency at higher temperatures. These findings demonstrate the intricate interplay between temperature, vector behavior, and virus transmission. Together, this study emphasizes the importance of incorporating environmental temperature dynamics into the development of sustainable and climate-resilient strategies for managing vector-borne diseases in agriculture.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"41 4","pages":"498-506"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.02.2025.0016","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Disease dynamics are significantly influenced by insect vectors through their interactions with viruses and host plants. The objective of this study is to understand how increased temperatures affect virus transmission, providing insights critical for developing climate-resilient pest and disease management strategies. We investigated the effects of temperature on the survival and growth of Myzus persicae (Sulzer) (Hemiptera: Aphididae), a key vector of the cucumber mosaic virus (CMV). Experiments were conducted to assess aphid survival, reproduction, and intrinsic rate of increase on healthy and CMV-infected Nicotiana tabacum plants at 25℃ and 30℃. It was observed that higher temperatures did not negatively affect aphid survival. CMV transmission assay was performed by allowing aphids to acquire and inoculate the virus under varied temperature combinations, while the aphid feeding behavior was monitored at different temperatures. The transmission efficiency was markedly reduced at 30℃ compared to 25℃, regardless of variations in temperature during virus acquisition and inoculation. Analysis of probing behavior revealed that aphids' probing behavior differed at 30℃, likely contributing to reduced transmission efficiency at higher temperatures. These findings demonstrate the intricate interplay between temperature, vector behavior, and virus transmission. Together, this study emphasizes the importance of incorporating environmental temperature dynamics into the development of sustainable and climate-resilient strategies for managing vector-borne diseases in agriculture.