Design and Validation of Specific qPCR Primers for Soil-Borne and Apple Tree-Associated Phytopathogenic Fungi.

IF 2.5 3区 农林科学 Q2 PLANT SCIENCES
Gudam Kwon, Kook-Hyung Kim
{"title":"Design and Validation of Specific qPCR Primers for Soil-Borne and Apple Tree-Associated Phytopathogenic Fungi.","authors":"Gudam Kwon, Kook-Hyung Kim","doi":"10.5423/PPJ.NT.05.2025.0062","DOIUrl":null,"url":null,"abstract":"<p><p>Soil-borne pathogenic fungi cause substantial economic losses worldwide by infecting the underground parts of plants. In fruit trees, infections are especially damaging, as they often result in the death of the entire plant. Therefore, early detection is essential for effective disease management caused by soil-borne pathogens. In this study, we designed and validated real-time PCR primers targeting eight soil-borne and apple tree-associated phytopathogenic fungi. Each primer set successfully detected 20 ng of target genomic DNA (gDNA) within 25 cycles, while the same amount of non-target gDNA mixture was detected only after 35 cycles of amplification. Moreover, target DNA amplification remained unaffected in the presence of mixed non-target gDNA background, confirming the high specificity of the primers. Sensitivity test showed that 1 fg of plasmid DNA, corresponding to about 290 copies, was detectable around 30 cycles with all primer sets. These primers support accurate pathogen detection and early diagnosis in various environmental samples.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"41 4","pages":"532-538"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.NT.05.2025.0062","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-borne pathogenic fungi cause substantial economic losses worldwide by infecting the underground parts of plants. In fruit trees, infections are especially damaging, as they often result in the death of the entire plant. Therefore, early detection is essential for effective disease management caused by soil-borne pathogens. In this study, we designed and validated real-time PCR primers targeting eight soil-borne and apple tree-associated phytopathogenic fungi. Each primer set successfully detected 20 ng of target genomic DNA (gDNA) within 25 cycles, while the same amount of non-target gDNA mixture was detected only after 35 cycles of amplification. Moreover, target DNA amplification remained unaffected in the presence of mixed non-target gDNA background, confirming the high specificity of the primers. Sensitivity test showed that 1 fg of plasmid DNA, corresponding to about 290 copies, was detectable around 30 cycles with all primer sets. These primers support accurate pathogen detection and early diagnosis in various environmental samples.

Abstract Image

Abstract Image

Abstract Image

土传和苹果树相关植物病原真菌特异性qPCR引物的设计与验证。
土壤传播的致病真菌通过感染植物的地下部分在世界范围内造成巨大的经济损失。在果树中,感染尤其具有破坏性,因为它们经常导致整株植物死亡。因此,早期发现对于有效管理由土壤传播的病原体引起的疾病至关重要。在这项研究中,我们设计并验证了针对8种土传和苹果树相关植物病原真菌的实时PCR引物。每个引物组在25个循环内成功检测到20 ng的目标基因组DNA (gDNA),而同样数量的非目标基因组DNA混合物在扩增35个循环后才检测到。此外,靶DNA扩增在混合非靶gDNA背景下不受影响,证实了引物的高特异性。灵敏度测试表明,所有引物在30个周期内检测到1 fg质粒DNA,对应约290个拷贝。这些引物支持准确的病原体检测和早期诊断在各种环境样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Pathology Journal
Plant Pathology Journal 生物-植物科学
CiteScore
4.90
自引率
4.30%
发文量
71
审稿时长
12 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信