{"title":"Application of Nanocomposites-Based Polymers on Managing Fungal Diseases in Crop Production.","authors":"Nguyen Huy Hoang, Toan Le Thanh, Chanon Saengchan, Rungthip Sangpueak, Wannaporn Thepbandit, Xiaolu Zhou, Anyanee Kamkaew, Kumrai Buensanteai","doi":"10.5423/PPJ.RW.02.2025.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Phytopathogen caused loss of global crop production of 16% and up to 25% in developing countries. Among them, fungi accounted for the highest ratio value with 42%, which direct reduced crop yield and quality. Nanotechnology can be applied to crop protection to build sustainable agricultural production. Polymers (gum, mucilage, chitosan) are naturally derived, readily available, inexpensive, convertible, and biodegradable, which could be combined with nanotechnology to enhance their properties and benefit. In this review, ionic gelation is more popular than nanoprecipitation, emulsion, γ-rays irradiation, and chemical reduction methods in preparing nanocomposites-based polymers in the management of fungal diseases in crop production. The chitosan was often dominated among the polymers. Moreover, the chitosan can be applied as chitosan nanoparticles or combined with an active ingredient (saponin, copper, silver, zinc, titanium dioxide, ethanolic blueberry extract, methanol of nanche extract, Mentha longifolia extract, Cymbopogon martinii essential oil, Harpin, salicylic acid, Thiamine, hexaconazole, dazomet, hexaconazole-dazomet) to enhance their efficacy in managing plant fungal disease. The fungicide, mental, and plant extracts are often loaded into the chitosan matrix to enhance antifungal and/or physical barrier properties. While phytohormones, vitamins, and mental are often used to stimulate plant disease resistance. And chitosan can be used as an adjuvant in metal/oxide mixture. In recent years, other polymers including polyethylene glycol, nanoliposomes, and poly(L-lactide) have been shown remarkable capabilities including resisting water washing and acting as a membrane filter with antifungal properties. These results show that the nanocomposites based-polymer has the ability to effectively manage plant diseases.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"41 4","pages":"437-455"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.RW.02.2025.0029","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytopathogen caused loss of global crop production of 16% and up to 25% in developing countries. Among them, fungi accounted for the highest ratio value with 42%, which direct reduced crop yield and quality. Nanotechnology can be applied to crop protection to build sustainable agricultural production. Polymers (gum, mucilage, chitosan) are naturally derived, readily available, inexpensive, convertible, and biodegradable, which could be combined with nanotechnology to enhance their properties and benefit. In this review, ionic gelation is more popular than nanoprecipitation, emulsion, γ-rays irradiation, and chemical reduction methods in preparing nanocomposites-based polymers in the management of fungal diseases in crop production. The chitosan was often dominated among the polymers. Moreover, the chitosan can be applied as chitosan nanoparticles or combined with an active ingredient (saponin, copper, silver, zinc, titanium dioxide, ethanolic blueberry extract, methanol of nanche extract, Mentha longifolia extract, Cymbopogon martinii essential oil, Harpin, salicylic acid, Thiamine, hexaconazole, dazomet, hexaconazole-dazomet) to enhance their efficacy in managing plant fungal disease. The fungicide, mental, and plant extracts are often loaded into the chitosan matrix to enhance antifungal and/or physical barrier properties. While phytohormones, vitamins, and mental are often used to stimulate plant disease resistance. And chitosan can be used as an adjuvant in metal/oxide mixture. In recent years, other polymers including polyethylene glycol, nanoliposomes, and poly(L-lactide) have been shown remarkable capabilities including resisting water washing and acting as a membrane filter with antifungal properties. These results show that the nanocomposites based-polymer has the ability to effectively manage plant diseases.