Hyun Hwangbo, Eun-Ju Kim, Gi-Young Kim, Sun-Young Hwang, Mee-Hyun Lee, Yung Hyun Choi
{"title":"Polystyrene Accelerates Aging Related-Gut Microbiome Dysbiosis and -Metabolites in Old-Aged Mouse.","authors":"Hyun Hwangbo, Eun-Ju Kim, Gi-Young Kim, Sun-Young Hwang, Mee-Hyun Lee, Yung Hyun Choi","doi":"10.4014/jmb.2504.04016","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics, particularly polystyrene (PS), are ubiquitous environmental contaminants and concerns about their potential detrimental effects on human health are increasing. Emerging evidence suggests that microplastics may disrupt the gut microbiota, a critical ecosystem involved in regulating host metabolism, immunity, and aging processes. However, the specific effects of PS on the gut microbiota composition and its potential role in modulating aging are yet to be fully elucidated. In this study, we aimed to investigate the effects of PS exposure on gut microbiota dysbiosis and its potential role in the acceleration of aging. Gut microbiota composition was assessed using 16S rDNA sequencing, while fecal metabolites were analyzed using gas chromatography-mass spectrometry. Exposure to PS resulted in a significant reduction in the abundance of beneficial microbiota, including <i>Blautia</i>. In contrast, there was an increase in the relative abundance of potentially harmful taxa, such as <i>Lachnospiraceae UCG-001</i>, and <i>Candidatus Arthromitus</i>. Metabolomic analysis revealed elevated levels of several metabolites associated with stress responses and altered host metabolism, including alanine, serine, tryptophan, 5-aminovaleric acid, thymine, threonine, methionine, and benzoic acid. These findings demonstrate that PS exposure in aged mice exacerbated gut microbiome dysbiosis and altered key metabolic markers associated with aging, suggesting an increased vulnerability to age-related diseases as a consequence of microplastic exposure.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2504016"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2504.04016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics, particularly polystyrene (PS), are ubiquitous environmental contaminants and concerns about their potential detrimental effects on human health are increasing. Emerging evidence suggests that microplastics may disrupt the gut microbiota, a critical ecosystem involved in regulating host metabolism, immunity, and aging processes. However, the specific effects of PS on the gut microbiota composition and its potential role in modulating aging are yet to be fully elucidated. In this study, we aimed to investigate the effects of PS exposure on gut microbiota dysbiosis and its potential role in the acceleration of aging. Gut microbiota composition was assessed using 16S rDNA sequencing, while fecal metabolites were analyzed using gas chromatography-mass spectrometry. Exposure to PS resulted in a significant reduction in the abundance of beneficial microbiota, including Blautia. In contrast, there was an increase in the relative abundance of potentially harmful taxa, such as Lachnospiraceae UCG-001, and Candidatus Arthromitus. Metabolomic analysis revealed elevated levels of several metabolites associated with stress responses and altered host metabolism, including alanine, serine, tryptophan, 5-aminovaleric acid, thymine, threonine, methionine, and benzoic acid. These findings demonstrate that PS exposure in aged mice exacerbated gut microbiome dysbiosis and altered key metabolic markers associated with aging, suggesting an increased vulnerability to age-related diseases as a consequence of microplastic exposure.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.