PVA-GO-Lip hydrogel loaded alendronate sodium: friction adaptation, controlled release, antibacterial and mineralization mechanism.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Guangru Zhang, Qianqian Sun, Guofa Zhang, Litao Wang, Xiaoqiu Cui, Mei Lv
{"title":"PVA-GO-Lip hydrogel loaded alendronate sodium: friction adaptation, controlled release, antibacterial and mineralization mechanism.","authors":"Guangru Zhang, Qianqian Sun, Guofa Zhang, Litao Wang, Xiaoqiu Cui, Mei Lv","doi":"10.1080/09205063.2025.2525505","DOIUrl":null,"url":null,"abstract":"<p><p>This research developed an advanced polyvinyl alcohol (PVA) based hydrogel, which combines graphene oxide (GO) and liposome (Lip) to solve the key challenges in joint repair. PVA-GO-Lip composite material was prepared by freeze-thaw cycling, forming a composite structure with hydrogen bonding network and embedded Lip micro reservoir. This material has excellent mechanical properties (300% elongation, 4.2 kg load capacity) and self-healing properties through dynamic hydrogen bonding. Friction tests showed that compared to pure PVA, friction was reduced by 48% (coefficient: 0.11) due to GO enhanced hydration and Lip mediated boundary lubrication. The release of alendronate (ALN) follows Higuchi kinetics, with stable Lip release under mechanical stress (cumulative release 82.4%). GO has excellent antibacterial activity (inhibition rate > 98% against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>), while ALN promotes significant mineralization (calcium/phosphate content increased by 8-16 times). This composite material has excellent stability (degradation of 2.6% within 30 days), adjustable hydrophilicity (contact angle of 36.5°), and swelling ability (equilibrium ratio of 49.21%). This multifunctional hydrogel combines mechanical durability, adaptive lubrication, controlled drug delivery, antibacterial effect and osteogenic potential. It is a promising biomimetic solution for the treatment of osteoarthritis and cartilage regeneration, linking biomechanical properties with therapeutic functions.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2525505","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research developed an advanced polyvinyl alcohol (PVA) based hydrogel, which combines graphene oxide (GO) and liposome (Lip) to solve the key challenges in joint repair. PVA-GO-Lip composite material was prepared by freeze-thaw cycling, forming a composite structure with hydrogen bonding network and embedded Lip micro reservoir. This material has excellent mechanical properties (300% elongation, 4.2 kg load capacity) and self-healing properties through dynamic hydrogen bonding. Friction tests showed that compared to pure PVA, friction was reduced by 48% (coefficient: 0.11) due to GO enhanced hydration and Lip mediated boundary lubrication. The release of alendronate (ALN) follows Higuchi kinetics, with stable Lip release under mechanical stress (cumulative release 82.4%). GO has excellent antibacterial activity (inhibition rate > 98% against Escherichia coli and Staphylococcus aureus), while ALN promotes significant mineralization (calcium/phosphate content increased by 8-16 times). This composite material has excellent stability (degradation of 2.6% within 30 days), adjustable hydrophilicity (contact angle of 36.5°), and swelling ability (equilibrium ratio of 49.21%). This multifunctional hydrogel combines mechanical durability, adaptive lubrication, controlled drug delivery, antibacterial effect and osteogenic potential. It is a promising biomimetic solution for the treatment of osteoarthritis and cartilage regeneration, linking biomechanical properties with therapeutic functions.

PVA-GO-Lip水凝胶负载阿仑膦酸钠:摩擦适应、控释、抗菌和矿化机制。
本研究开发了一种先进的聚乙烯醇(PVA)为基础的水凝胶,它结合了氧化石墨烯(GO)和脂质体(Lip),以解决关节修复的关键挑战。采用冻融循环法制备PVA-GO-Lip复合材料,形成具有氢键网络和嵌入Lip微储层的复合结构。该材料具有优异的机械性能(300%伸长率,4.2 kg负载能力)和通过动态氢键的自修复性能。摩擦试验表明,与纯PVA相比,氧化石墨烯增强的水化作用和唇部介导的边界润滑使摩擦降低了48%(系数:0.11)。阿仑膦酸钠(ALN)的释放符合Higuchi动力学,在机械应力下具有稳定的Lip释放(累计释放82.4%)。氧化石墨烯具有优异的抑菌活性(对大肠杆菌和金黄色葡萄球菌的抑制率为bb0 98%),而ALN具有显著的矿化作用(钙/磷酸盐含量提高8-16倍)。该复合材料具有优异的稳定性(30天内降解率为2.6%)、可调节的亲水性(接触角为36.5°)和膨胀能力(平衡比为49.21%)。这种多功能水凝胶结合了机械耐久性,自适应润滑,控制药物输送,抗菌效果和成骨潜力。它是治疗骨关节炎和软骨再生的一种很有前途的仿生解决方案,将生物力学特性与治疗功能联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信