{"title":"3D finite-element study for multi-frequency harmonic shear wave elastography: shear wave speed contrast assessment and experimental verification.","authors":"Tuhin Roy, Elisa E Konofagou","doi":"10.1016/j.jbiomech.2025.112886","DOIUrl":null,"url":null,"abstract":"<p><p>Towards the characterization of viscoelasticity of the soft tissue, which is an important biomarker, this study aims to investigate the effectiveness of the Harmonic Shear Wave Elastography (HSWE) framework by analyzing the frequency-dependent phase velocity maps, using a 3D Finite-Element-based simulation framework. Here, we developed and verified a 3D finite-element framework to accurately model the tissue displacement under a multi-frequency HSWE setting. The HSWE results were compared using both simulation and phantom experiments against those from the Pulsed Shear Wave Elastography (PSWE) method which is widely used in shear wave elastography problems. Particularly, we analyzed the group and frequency-dependent phase velocities, focusing on the frequency range of 300 to 800 Hz. Additionally, we conducted parametric studies to examine the effects of inclusion size, stiffness, and viscosity. The HSWE framework provided accurate measurements of group and phase velocities, comparable to those obtained using the PSWE method. The median differences between HSWE and PSWE results were 5.21 % and 9.14 % for group and phase velocities, respectively, in simulations, and 13.98 % and 22.32 % for group and phase velocities, respectively, in phantom experiments. Parametric studies showed that the HSWE framework is effective in accurately characterizing the location, size, stiffness and viscoelastic properties of tissue inclusions, with notable improvements over PSWE, particularly for smaller inclusions at lower frequencies. Future work will focus on optimizing the HSWE framework for clinical use and developing inverse models to estimate the underlying viscoelastic shear moduli of the tissue to enhance its diagnostic capabilities.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"190 ","pages":"112886"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112886","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Towards the characterization of viscoelasticity of the soft tissue, which is an important biomarker, this study aims to investigate the effectiveness of the Harmonic Shear Wave Elastography (HSWE) framework by analyzing the frequency-dependent phase velocity maps, using a 3D Finite-Element-based simulation framework. Here, we developed and verified a 3D finite-element framework to accurately model the tissue displacement under a multi-frequency HSWE setting. The HSWE results were compared using both simulation and phantom experiments against those from the Pulsed Shear Wave Elastography (PSWE) method which is widely used in shear wave elastography problems. Particularly, we analyzed the group and frequency-dependent phase velocities, focusing on the frequency range of 300 to 800 Hz. Additionally, we conducted parametric studies to examine the effects of inclusion size, stiffness, and viscosity. The HSWE framework provided accurate measurements of group and phase velocities, comparable to those obtained using the PSWE method. The median differences between HSWE and PSWE results were 5.21 % and 9.14 % for group and phase velocities, respectively, in simulations, and 13.98 % and 22.32 % for group and phase velocities, respectively, in phantom experiments. Parametric studies showed that the HSWE framework is effective in accurately characterizing the location, size, stiffness and viscoelastic properties of tissue inclusions, with notable improvements over PSWE, particularly for smaller inclusions at lower frequencies. Future work will focus on optimizing the HSWE framework for clinical use and developing inverse models to estimate the underlying viscoelastic shear moduli of the tissue to enhance its diagnostic capabilities.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.